Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T07:08:11.979Z Has data issue: false hasContentIssue false

Crystal-chemical study of wavellite from Zbirov, Czech Republic

Published online by Cambridge University Press:  05 July 2018

F. Capitelli*
Affiliation:
Istituto di Cristallografia – CNR, Via Salaria Km 29.300, 00016 Monterotondo, Rome, Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
A. Sodo
Affiliation:
Dipartimento di Scienze, Università Roma Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
M. Saviano
Affiliation:
Istituto di Cristallografia – CNR, Via G. Amendola, 122/O, 70126 Bari, Italy
M. R. Ghiara
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy Real Museo Mineralogico, Centro Musei delle Scienze Naturali, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
M. Rossi
Affiliation:
Real Museo Mineralogico, Centro Musei delle Scienze Naturali, Università degli Studi di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
*

Abstract

The crystal chemistry of wavellite from Zbirov (Czech Republic), ideally Al3(PO4)2(OH,F)3·5H2O, was addressed by means of a multi-methodological approach based on electron microprobe analysis (EMPA) using wave-dispersive spectroscopy, single-crystal X-ray diffraction, powder and singlecrystal infrared spectroscopy and Raman spectroscopy. The EMPA data showed the presence of significant F replacing OH in the sample studied. The structure was solved in the Pcmn orthorhombic space group, with the following unit-cell constants: a = 9.6422(7), b = 17.4146(15), c = 7.0094(2) Å, V = 1176.98(10) Å3. Phosphorus atoms display tetrahedral (PO4) coordination, while Al cations display octahedral coordination. The mineral framework can be viewed as the repetition of cationic arrays made up of AlO6 polyhedra, bridged by PO4 groups and further joined by O–H⋯O hydrogen bonds. The single-crystal unpolarized Fourier transform infrared (FTIR) spectrum shows combination bands indicating the presence of both OH and H2O in the structure. Both FTIR and Raman spectra show a broad absorption extending from 3600 to 2800 cm−1 resulting from the overlapping of several components due to the water molecules and the OH group. The frequencies observed are comparable to those expected on the basis of the Libowitzky relationship for the range of D–H⋯A bond systems in the structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, T. and Zoltai, T. (1968) The crystal structure of wavellite. Zeitschrift für Kristallographie, 127, 2133.CrossRefGoogle Scholar
Brandenburg, K. (1999) DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.Google Scholar
Brown, I.D. and Altermatt, D. (1985): Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica B, 41, 244247.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609613.CrossRefGoogle Scholar
Capitelli, F., Elaatmani, M., Lalaoui, M.D. and Piniella, J.F. (2007) Crystal structure of a vivianite-type mineral: Mg-rich erythrite, (Co2.16Ni0.24Mg0.60) (AsO4)2·8H2O. Zeitschrift für Kristallographie, 222, 676679.Google Scholar
Capitelli, F., Chita, G., Cavallo, A., Bellatreccia, F. and Della Ventura, G. (2011) Crystal-Structure of whiteite-(CaFeMg) from Crosscut Creek, Canada. Zeitschrift für Kristallographie, 226, 731738.CrossRefGoogle Scholar
Capitelli, F., Chita, G., Ghiara, M.R. and Rossi, M. (2012) Crystal chemical investigation of Fe3(PO4)2·8H2O vivianite minerals. Zeitschrift für Kristallographie, 227, 92101.CrossRefGoogle Scholar
Capitelli, F., Saviano, M., Ghiara, M.R. and Rossi, M. (2014) Crystal chemical investigation of Al2(PO4)(OH)3 augelite from Rapid Creek, Yukon, Canada. Zeitschrift für Kristallographie, 229, 816.Google Scholar
Chiari, G. and Ferraris, G. (1982) The water molecule in crystalline hydrates studied by neutron diffraction. Acta Crystallographica B, 38, 23312341.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.CrossRefGoogle Scholar
Della Ventura, G., Gatta, D., Redhammer, G., Bellatreccia, F., Loose, A. and Parodi, G.C. (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals, 36, 193206.CrossRefGoogle Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan. O03-13.Google Scholar
Duisenberg, A.J.M., Kroon-Batenburg, L.M.J. and Schreurs, A.M.M. (2003) An intensity evaluation method: EVAL-14. Journal of Applied Crystallography, 36, 220229.CrossRefGoogle Scholar
Foster, M.D. and Schaller, W.T. (1966) Cause of colors in wavellite from Dug Hill Arkansas. American Mineralogist, 51, 422428.Google Scholar
Harcharras, M., Capitelli, F., Ennaciri, A., Brouzi, K., Moliterni, A.G.G., Mattei, G. and Bertolasi, V. (2003) Synthesis, X-ray crystal structure and vibrational spectroscopy of the acidic pyrophosphate KMg0.5H2P2O7·H2O. Journal of Solid State Chemistry, 176, 2732.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne FC (2002) The crystal chemistry of the phosphate minerals. Pp. 123–253 in: Phosphates (M.L. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Washington DC. Inorganic Crystal Structure Database (2013) Version 2013–2. Fachinformationszentrum Karlsruhe, Germany.CrossRefGoogle Scholar
Kobashi, D., Kohara, S., Yamakawa, J. and Kawahara, A. (1997) Structure d’un diphosphate synthétique de cobalt: Co2P2O7 . Acta Crystallographica C, 53, 15231525.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Nakamoto, K. (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th Edition. Wiley and Sons, New York.Google Scholar
Nazarova, G.S., Lutoev, V.P. and Denisova, T.A. (1991) Spectroscopic investigation of structure transformation in wavellite. Applied Magnetic Resonance, 2, 533546.CrossRefGoogle Scholar
Nonius (1998) COLLECT. Nonius B.V., Delft, The Netherlands.Google Scholar
Nunes, A.P.L., Peres, A.E.C., Araujo, A.C. and Valadao, G.E.S. (2011) Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors. Journal of Colloid and Interface Science, 361, 632638.CrossRefGoogle ScholarPubMed
Nunes, A.P.L., Pinto, C.L.L., Valadao, G.E.S. and Viana, P.R.M. (2012) Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Minerals Engineering, 39, 206212.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 31–75 in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.Google Scholar
Reddy, S.L., Reddy, B.J. and Rao, P.S. (1992) Opticalabsorption and EPR-spectra of VO(II) in wavellite. Spectrochimica Acta A, 49, 599599.CrossRefGoogle Scholar
Ross, S.D. (1974) Phosphates and other oxy-anions of group V. Pp. 383–422 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). Mineralogical Society Monograph 4. Mineralogical Society, London.Google Scholar
Rossi, M., Ghiara, M.R., Chita, G. and Capitelli, F. (2011) Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex. American Mineralogist, 96, 18281837.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS, Absorption Correction Program. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97. Program for the Refinement of Crystal Structures. University of Gottingen, Germany.Google Scholar