Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T03:37:12.885Z Has data issue: false hasContentIssue false

Crystal-chemical characterization of NaAlSiO4 with the CaFe2O4 structure

Published online by Cambridge University Press:  05 July 2018

Hirohisa Yamada
Affiliation:
Institute for Thermal Spring Research, Okayama University Misasa, Tottori-ken, 682-02, Japan

Abstract

A high-pressure modification of NaAlSiO4, with the calcium ferrite structure was synthesized at pressures higher than 24 GPa using a double-stage split-sphere type high-pressure apparatus. The unit cell dimensions are: a=10.1546(8), b=8.6642(8), c= 2.7385(4) Å, and V = 240.93(3) Å3 with the space group Pbnm. Calculated density is 3.916(1) g/cm3. The crystal structure was determined by the ordinary powder X-ray method. Both M1O6 and M2O6 octahedra run parallel to the c-axis, forming edge-shared double chains. The shared edges exhibit remarkable shortening (2.25–2.39 Å). Sodium atoms are located in the ‘tunnel’ formed by the linked double chains, being in eightfold co-ordination. The structure is very similar to that predicted by Dempsey and Strens (1976) with the aid of the DLS method. The possible instability of the calcium ferrite type of Mg2SiO4 is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Kyoto 606, Japan.

References

Baur, W. H. (1972) Am. Mineral. 57, 709–31.Google Scholar
Baur, W. H. and Khan, A. A. (1971) Ada Crystallogr. B27, 2133–9.CrossRefGoogle Scholar
Chao, E. C. T., Fahey, J. J., Littler, J., and Milton, D. J. (1962) J. Geophys. Res. 67, 419–21.CrossRefGoogle Scholar
Dempsey, M. J., and Strens, R. G. J. (1976) In The Physics and Chemistry of Minerals and Rocks (Strens, R. G. J., ed.), 443–58, John Wiley & Sons, London.Google Scholar
Eggleton, R. A., Boland, J. N., and Ringwood, A. E. (1978) Geochem. J. 12, 191–4.CrossRefGoogle Scholar
Gibbs, G. V., and Smith, J. V. (1965) Am. Mineral. 50, 2023–38.Google Scholar
Ito, E. (1977) Geophys. Res. Lett. 4, 72–4.CrossRefGoogle Scholar
Ito, E. and Matsui, Y. (1974) Phys. Earth Planet. Inter. 9, 344–52.CrossRefGoogle Scholar
Ito, E. (1978) Earth Planet. Sci. Lett. 38, 443–50.CrossRefGoogle Scholar
Kawai, N., and Endo, S. (1970) Rev. Sci. Instrum. 46, 1178–81.CrossRefGoogle Scholar
Liu, L. (1976) Nature, 262, 770–2.CrossRefGoogle Scholar
Liu, L. (1977) Geophys. Res. Lett. 4, 183–6.CrossRefGoogle Scholar
Liu, L. (1978) Earth Planet. Sci. Lett. 4, 438–44.CrossRefGoogle Scholar
MacGillavry, C. H., and Reik, G. D. (1968) International Tables for X-ray Crystallography, 3, Kynoch Press, Birmingham.Google Scholar
Prewitt, C. T., and Burnham, C. W. (1966) Am. Mineral. 51, 956–75.Google Scholar
Reid, A. F., and Ringwood, A. E. (1969) Earth Planet. Sci. Lett. 6, 205–8.CrossRefGoogle Scholar
Wadsley, A. D., and Ringwood, A. E. (1967) Acta Crystallogr. 23, 736–9.Google Scholar
Ringwood, A. E., and Major, A. (1967) Earth Planet. Sci. Lett. 2, 106–10.CrossRefGoogle Scholar
Tokonami, M. (1965) Acta Crystallogr. 19, 486.CrossRefGoogle Scholar