Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T08:59:26.819Z Has data issue: false hasContentIssue false

The crystal structure of barikaite

Published online by Cambridge University Press:  05 July 2018

E. Makovicky*
Affiliation:
Institute for Geoscience and Mineral Resources Management, University of Copenhagen, Østervoldgade 10, DK-1350, Copenhagen K, Denmark
D. Topa
Affiliation:
Natural History Museum-Wien, Burgring 7, 1010 Vienna, Austria
*

Abstract

Electron microprobe analysis of barikaite (Topa et al., 2013) indicates the chemical formula Ag2.90Tl0.04Pb9.31As11.26Sb8.12S40.37. Barikaite is monoclinic, with a 8.533(1) Å, b 8.075(1) Å, c 24.828(2) Å, and β 99.077(1)°; unit-cell volume 1689.2 Å3 and the space-group setting is P21/n. This compares well with the unit-cell parameters of rathite Pb10Tl0.9As17.9Sb1.3Ag2S40 from the Lengenbach deposit with the same lattice setting. Barikaite is a member of sartorite homologous series (N = 4). The unit cell of barikaite contains eight cation sites and ten anion sites. Four of the cation sites have mixed occupancies – the split sites As2–Sb2, As3–Sb3, Ag5–As5 and the site Me6 with three cations involved. Two of the lead sites, Pb1 and Pb2, display tricapped trigonal prismatic coordinations and alternate along the 8.53 Å a direction. They form zig-zag walls parallel to (001). There are three distinct [100] columns of alternating cations, As1–(As, Sb)2, Sb4–(As, Sb)3 and (As, Ag)5–(Pb, Sb)6 which together form trapezoidally configured single (013) layers. These layers aggregate into tightly-bonded double layers, separated by lone electron pair micelles. In barikaite, the predominantly As-occupied and Sb-occupied sites are distributed in a chess-board-like scheme.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Makovicky, E. and Balić-Žunić, T. (2001) Crystal chemistry of sartorite homologues and related sulfosalts. Neues Jahrbuch für Mineralogie, Abhandlungen, 176, 4566.CrossRefGoogle Scholar
Berlepsch, P., Armbruster, T. and Topa, D (2002) Structural and chemical variations in rathite, Pb8Pb4-x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschrift für Kristallographie, 217, 110.Google Scholar
Berlepsch, P., Armbruster, T., Makovicky, E. and Topa, D. (2003) Another step toward understanding the true nature of sartorite: Determination and refinement of a ninefold superstructure. American Mineralogist, 88, 450461.CrossRefGoogle Scholar
Bruker AXS (1997) XPREP, Version 5.1, Bruker AXS, Inc., Madison,Wisconsin 53719, USA.Google Scholar
Bruker AXS (1998a) SMART, Version 5.0, Bruker AXS, Inc., Madison, Wisconsin 53719, USA.Google Scholar
Bruker AXS (1998b) SAINT, Version 5.0, Bruker AXS, Inc., Madison,Wisconsin 53719, USA.Google Scholar
Engel, P. and Nowacki, W. (1969) Die Kristallstruktur von Baumhauerit. Zeitschrift für Kristallographie, 129, 178202.CrossRefGoogle Scholar
Engel, P. and Nowacki, W. (1970) Die Kristallstruktur von Rathit-II [As25S56/Pb(VII) 6.5 Pb(IX) 12 ]. Zeitschrift für Kristallographie, 131, 365375.CrossRefGoogle Scholar
Iitaka, Y. and Nowacki, W. (1961) A refinement of the pseudo crystal structure of scleroclase PbAs2S4. Acta Crystallographica, 14, 12911292.CrossRefGoogle Scholar
Jambor, J.L. (1967a) New lead sulfantimonides from Madoc, Ontario. Part 2 – Mineral descriptions. The Canadian Mineralogist, 9, 191213.Google Scholar
Jambor, J.L. (1967b) New lead sulfantimonides from Madoc, Ontario – Part 1. The Canadian Mineralogist, 9, 724.Google Scholar
Jambor, J.L. (1968) New lead sulfantimonides from Madoc, Ontario. Part 3 – Syntheses, paragenesis, origin. The Canadian Mineralogist, 10, 505521.Google Scholar
Johan, Z. and Mantienne, J. (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alps, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society, 5, 6377.Google Scholar
Khodaparast, M., Tajedin, H., and Shahrokhi, V. (2010) Nature of fluid inclusions of gold mineralization at Barika shear zone: Example of Kuroko type gold mineralization in the west of Iran. The 1st International Applied Geological Congress, Department of Geology, Islamic Azad University – Mashad Branch, Iran, 26-28 April 2010.Google Scholar
Le Bihan, M.Th. (1962) Étude structural de quelques sulfures de plomb et d’arsenic naturels du gisement de Binn. Bulletin de la Societé française de Minéralogie et Cristallographie, 85, 1547.CrossRefGoogle Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie, 63, 4589.Google Scholar
Makovicky, E. and Mumme, W.G. (1983) The crystal structure of ramdohrite, Pb6Sb11Ag3S24, and its implications for, the andorite group and zinckenite. Neues Jahrbuch für Mineralogie, Abhandlungen, 147, 5879.Google Scholar
Makovicky, E. and Topa, D. (2012) Twinnite, Pb0.8Tl0.1Sb1.3As0.8S4, the OD character and the question of its polytypism. Zeitschrift für Kristallographie, 227, 468475.Google Scholar
Makovicky, E., Topa, D., Tajjedin, H., Rastad, E. and Yaghubpur, A. (2012) The crystal structure of guettardite, PbAsSbS4, and the twinnite-guettardite problem. The Canadian Mineralogist, 50, 253266.CrossRefGoogle Scholar
Mantienne, J. (1974) La minéralisation metallifère de Jas-Roux (Hautes-Alpes). Thèse de Doctorat Universitaire. Université de Paris 6, 153 pp.Google Scholar
Marumo, F. and Nowacki, W. (1965) The crystal structure of rathi te- I. Zeitschrift für Kristallographie, 122, 433456.CrossRefGoogle Scholar
Marumo, F. and Nowacki, W. (1967) The crystal structure of dufrenoysite, Pb16As16S40. Zeitschrift für Kristallographie, 124, 409419.CrossRefGoogle Scholar
Orlandi, P., Biagioni, C., Bonaccorsi, E., Moëlo, Y. and Paar, W.H. (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite , TlPb3(Sb7As2)S9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. The Canadian Mineralogist, 50, 235251.CrossRefGoogle Scholar
Ozawa, T. and Tachikawa, O. (1996) A transmission electron microscope observation of 138 Å period in Pb-As-S sulfosalts. Mineralogical Journal, 18, 97101.CrossRefGoogle Scholar
Ozawa, T. and Takéuchi, Y. (1993) X-ray and electron diffraction study of sartorite – a periodic antiphase boundary structure and polymorphism. Mineralogical Journal, 16, 358370.CrossRefGoogle Scholar
Pring, A. (2001) The crystal chemistry of the sartorite group minerals from Lengenbach, Binntal, Switzerland – a HRTEM study. Schweizerische Mineralogisch-Petrographische Mitteilungen, 81, 6987.Google Scholar
Pring, A., Williams, T. and Withers, R. (1993) Structural modulation in sartorite: An electron microscope study. American Mineralogist, 78, 619626.Google Scholar
Sheldrick, G.M. (1997a) SHELXS-97. A computer program for crystal structure determination. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997b) SHELXL-97. A computer program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Topa, D., Makovicky, E., Tajeddin, H., Putz, H. and Zagler, G. (2013) Barikaite, Ag3Pb10(Sb8As11)S19S40, a new member of the sartorite homologous series. Mineralogical Magazine, 77, 30393046.CrossRefGoogle Scholar
Trommel, M. (1981) Abstandskorrelationen bei der Tellur(IV)-Sauerstoff- und bei der Antimon(III)- Sauerstoff-Koordination. Zeitschrift für Kristallographie, 154, 338339.Google Scholar