Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T05:16:55.792Z Has data issue: false hasContentIssue false

The crystal chemistry of the gedrite-group amphiboles. I. Crystal structure and site populations

Published online by Cambridge University Press:  05 July 2018

M. Schindler
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
E. Sokolova
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Y. Abdu
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
B. W. Evans
Affiliation:
Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195, USA
K. Ishida
Affiliation:
Department of Evolution of Earth Environments, Graduate School of Social and Cultural Studies, Kyushu University, 4-2-1 Ropponmatsu, Chu-ku, Fukuoko 810-8560, Japan
*

Abstract

The crystal structures of twenty-five orthorhombic Fe-Mg-Mn amphiboles, a = 18.525 – 18.620, b = 17.806-18.034, c = 5.264-5.303 Å, V = 1737.6-1776.7, space group = Pnma, Z = 4, have been refined to R indices in the range 2.1–7.8% using 790–1804 unique observed reflections measured with Mo-Kα X-radiation on a Bruker P4 automated four-circle diffractometer equipped with a 1K CCD detector. The quality of the refinements is strongly a function of the [4]Al content of the crystals because of unmixing in the central part of the series due to the presence of a low-temperature solvus. The amphibole crystals were analysed by electron microprobe subsequent to collection of the X-ray intensity data and span the anthophyllite-gedrite series from 0.17–1.82 [4]Al a.p.f.u. Mössbauer spectroscopy shows that the amphiboles of this series commonly contain small but significant amounts of Fe3+ . The amount of [4]Al is linearly related to the grand <T-O> distance by the equation <T-O> = 1.6214 + 0.171 [4]Al, R = 0.980; the slope of this relation is not significantly different from that characteristic of a hard-sphere model. The <T-O> distances indicate the following site preference for [4]Al: T1B > T2B > T1A » T2A. The <M2-O> distances are compatible with all [6]Al and Fe3+ ordered at the M2 site. The grand <M1,2,3 '3 –O> distance is related to the mean radius of the constituent cations, <rM1,2,3>, by the equation ≪M1,2,3-O≫ = 1.4684 + 0.8553(7) <rM1,2,3>.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bancroft, G.M. and Burns, R.G. (1968) Applications of the Mossbauer effect to mineralogy. Pp. 3642 in: Papers and Proceedings of the Fifth General Meeting of the International Mineralogical Association (Cambridge, 1966). Mineralogical Society, London.Google Scholar
Bancroft, G.M., Maddock, A.G., Burns, R.G. and Strens, R.GJ. (1966) Cation distribution in anthophyllite from Mossbauer and infrared spectroscopy. Nature, 212, 913915.CrossRefGoogle Scholar
Bancroft, G.M., Maddock, A.G. and Burns, R.G. (1967) Applications of the Mossbauer effect to silicate mineralogy. I. Iron silicates of known crystal structure. Geochimica et Cosmochimica Ada, 31, 22192246.CrossRefGoogle Scholar
Barabanov, A.V. and Tomilov, S.B. (1973) Mossbauer study of the isomorphous series anthophyllite-gedrite and cummingtonite-grunerite. Geochemistry International USSR, 12401247.Google Scholar
Berg, J.H. (1985) Chemical variations in sodium gedrite from Labrador. American Mineralogist, 70, 12051210.Google Scholar
Burns, R.G. and Law, A.D. (1970) Hydroxyl stretching frequencies in the infrared spectra of anthophyllites and gedrites. Nature, 226, 7375.CrossRefGoogle ScholarPubMed
Champness, P.E. and Rodgers, K.A. (2000) The origin of iridescence in anthophyllite-gedrite from Simiuttat, Nuuk district, southern West Greenland. Mineralogical Magazine, 64, 885889.CrossRefGoogle Scholar
Claeson, D.T. and Meurer, W.P. (2002) An occurrence of igneous orthorhombic amphibole, Eriksberg gabbro, southern Sweden. American Mineralogist, 87, 699708.CrossRefGoogle Scholar
Evans, B.W., Ghiorso, M.S., Yang, H. and Medenbach, O. (2001) Thermodynamics of the amphiboles: Anthophyllite-ferroanthophyllite and the ortho-clino phase loop. American Mineralogist, 86, 640651.CrossRefGoogle Scholar
Fabries, J. and Perseil, E.A. (1971) Nouvelles observations sur les amphiboles orthorhombiques. Bulletin de la Societe franqaise Mineralogie et de Cristallographie, 94, 385395.CrossRefGoogle Scholar
Finger, I.W. (1970) Refinement of the crystal structure of an anthophyllite. Carnegie Institute of Washington Year Book, 68, 283288.Google Scholar
Gittos, M.F., Lorimer, G.W. and Champness, P.E. (1976) The phase distribution of exsolved amphiboles. Pp. 238247 in: Electron Microscopy in Mineralogy (Wenk, H.R., editor). Springer, New York.CrossRefGoogle Scholar
Hawthorne, F.C. (1983) The crystal chemistry of the amphiboles. The Canadian Mineralogist, 21, 173480.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C. R.Oberti, Delia Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry 67, Mineralogical Society of America, Chantilly, VA, and the Geochemical Society, Washington, D.C. CrossRefGoogle Scholar
Hirschmann, M., Evans, B.W. and Yang, H. (1994) Composition and temperature dependence of Fe-Mg ordering in cummingtonite-grunerite as determined by X-ray diffraction. American Mineralogist, 79, 862877.Google Scholar
Ibers, J.A. and Hamilton, W.C. (eds.) (1992) International Tables for X-ray Crystallography IV. Kynoch Press, Birmingham, U.K. Google Scholar
Ishida, K. (1998) Cation disordering in heat-treated anthophyllites through oxidation and dehydrogena-tion. Physics and Chemistry of Minerals, 25, 160167.CrossRefGoogle Scholar
Ishida, K. and Hawthorne, F.C. (2003) Fine structure in the infrared OH-stretching bands of holmquistite and anthophyllite. Physics and Chemistry of Minerals, 30, 330336.CrossRefGoogle Scholar
Ito, T. and Morimoto, N. (1950) Anthophyllite. Pp. 4249 in: X-ray studies on Polymorphism (Ito, T., Sadanaga, R. and Takeuchi, Y., editors). Maruzen Co. Ltd., Tokyo.Google Scholar
Law, A.D. (1976) A model for the investigation of hydroxyl spectra of amphiboles. Pp. 677686 in: The Physics and Chemistry of Minerals and Rocks (Strens, R.GJ., editor). John Wiley and Sons, London.Google Scholar
Law, A.D. (1981) Studies of the orthoamphiboles. II. Hydroxyl spectra of anthophyllites. Bulletin de la Societe franqaise Mineralogie et de Cristallographie, 104, 423430.Google Scholar
Law, A.D. (1982) Studies of the orthoamphiboles. III. Hydroxyl spectra of gedrites. Mineralogical Magazine, 45, 6371.CrossRefGoogle Scholar
Law, A.D. (1989) Studies of the orthoamphiboles. IV. Mossbauer spectra of anthophyllites and gedrites. Mineralogical Magazine, 53, 181191.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C, Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youshi, G. (1997) Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61, 295321.CrossRefGoogle Scholar
Lindemann, W. (1964) Beitrag zur Struktur des Anthophyllits. Fortschritte der Mineralogie, 42, 205 (abstract).Google Scholar
Mao, H.K. and Siefert, F. (1974) A study of the crystal-field effects of iron in the amphiboles anthophyllite and gedrite. Carnegie Institute of Washington Year Book, 73, 500502.Google Scholar
Miiller, W.F., Schmadicke, E., Okrusch, M. and Schiissler, U. (2003) Intergrowths between anthophyllite, gedrite, calcic amphibole, cummingtonite, talc and chlorite in a metamorphosed ultramafic rock of the KTB pilot hole, Bavaria. European Journal of Mineralogy, 15, 295307.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. and Memmi, I. (1995) Temperature-dependent Al order-disorder in the tetrahedral double-chain of C2/m amphiboles. European Journal of Mineralogy, 7, 10491063.CrossRefGoogle Scholar
Papike, JJ. and Ross, M. (1970) Gedrites: crystal structures and intracrystalline cation distributions. American Mineralogist, 55, 19451972.Google Scholar
Rabbit, J.C. (1948) A new study of the anthophyllite series. American Mineralogist, 33. 263323.Google Scholar
Rancourt, D.G. and Ping, J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfme parameter distributions in Mossbauer spectroscopy. Nuclear Instruments and Methods in Physics Research, B58, 8597.CrossRefGoogle Scholar
Robinson, P. and Jaffe, H.W. (1969) Chemographic exploration of amphibole assemblages from central Massachusetts and southwestern New Hampshire. Mineralogical Society of America Special Paper, 2, 251274.Google Scholar
Robinson, P., Ross, M. and Jaffe, H.W. (1971) Composition of the anthophyllite-gedrite series, comparisons of gedrite-hornblende, and the antho-phylite-gedrite solvus. American Mineralogist, 56, 10041041.Google Scholar
Robinson, P., Spear, F.S., Schumacher, J.C, Laird, J., Klein, C Evans, B.W. and Doolan, B.L. (1981) Phase relations of metamorphic amphiboles: natural occurrence and theory. Pp. 1227 in: Amphiboles. Petrology and Experimental Phase Relations (Veblen, D.R. and Ribbe, P.H., editors). Reviews in Mineralogy 9B, Mineralogical Society of America, Washington, D.C Google Scholar
Schneidermann, J.S. and Tracy, R.J. (1991) Petrology of orthoamphibole-cordierite gneisses from the Orijarvi area, southwest Finland. American Mineralogist, 76, 942955.Google Scholar
Schumacher, J. and Robinson, P. (1987) Mineral chemistry and metasomatic growth of aluminous enclaves in gedrite-cordierite-gneiss from southwestern New Hampshire, U.S.A. Journal of Petrology, 28, 10331073.CrossRefGoogle Scholar
Seifert, F. (1977) Compositional dependence of the hyperfme interaction of 5Fe in anthophyllite. Physics and Chemistry of Minerals, 1, 4352.CrossRefGoogle Scholar
Seifert, F. (1978) Equilibrium Mg-Fe2+ cation distribution in anthophyllite. American Journal of Science, 278, 13231333.CrossRefGoogle Scholar
Seifert, F. and Virgo, D. (1974) Temperature dependence of intracrystalline Fe +-Mg distribution in a natural anthophyllite. Carnegie Institute of Washington Year Book, 73, 405411.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, WI.Google Scholar
Sheldrick, G.M. (1998) SADABS User Guide, University of Gottingen, Germany.Google Scholar
Smelik, E.A. and Veblen, D.R. (1993) A transmission and analytical electron microscope study of exsolution micro structures in the orthoamphiboles antho-phyllite and gedrite. American Mineralogist, 78, 511532.Google Scholar
Spear, F.S. (1980) The gedrite-anthophyllite solvus and the composition limits of orthoamphibole from the Post Pond Volcanics, Vermont. American Mineralogist, 65, 11031118.Google Scholar
Stout, J.H. (1971) Four coexisting amphiboles from Telemark, Norway. American Mineralogist, 56, 212224.Google Scholar
Strens, R.G.J. (1966) Infrared study of cation ordering and clustering in some (Fe,Mg) amphibole solid solutions. Chemical Communications, 15, 519520.Google Scholar
Strens, R.GJ. (1974) The common chain, ribbon and ring silicates. Pp. 305344 in: The Infrared Spectra of Minerals (Farmer, V.D., editor). Mineralogical Society, London.CrossRefGoogle Scholar
Stroink, G., Blaauw, C, White, C.G. and Leiper, W. (1980) Mossbauer characteristics of UICC standard reference asbestos samples. The Canadian Mineralogist, 18, 285290.Google Scholar
Treloar, PJ. and Putnis, A. (1982) Chemistry and micro structure of orthoamphiboles from cordierite-amphibole rocks at Outokumpu, North Karelia, Finland. Mineralogical Magazine, 45, 5562.CrossRefGoogle Scholar
Walitzi, E.M., Walter, F. and Ettinger, K. (1989) Verfeinerung der Kristallstruktur von Anthophyllit vom Ochsenkogel/Gleinalpe, Osterreich. Zeitschrift fur Kristallographie, 188, 237244.CrossRefGoogle Scholar
Warren, B.E. and Modell, D.I. (1930) The structure of anthophyllite H2Mg7(SiO3)8 . Zeitschrift fur Kristallographie, 75, 161178.Google Scholar