Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T11:05:43.876Z Has data issue: false hasContentIssue false

Cordierite in felsic igneous rocks: a synthesis

Published online by Cambridge University Press:  05 July 2018

D. B. Clarke*
Affiliation:
Department of Earth Sciences, Dalhousie University, Halifax, N.S., Canada B3H 3J5

Abstract

Cordierite is a characteristic mineral of many peraluminous felsic igneous rocks. A combination of T-P-X parameters, which overlap the stability conditions for felsic magmas, control its formation. Critical among these parameters are relatively low T, low P, and typically high (Mg+Fe2+), Mg/Fe2+, A/CNK, aAl2O3, and fO2. Spatial and textural information indicate that cordierite may originate in one of three principal ways in felsic igneous rocks: Type 1 Metamorphic: (a) xenocrystic (generally anhedral, many inclusions, spatial proximity to country rocks and pelitic xenoliths); (b) restitic (generally anhedral, high-grade metamorphic inclusions); Type 2 Magmatic: (a,b) peritectic (subhedral to euhedral, associated with leucosomes in migmatites or as reaction rims on garnet); (c) cotectic (euhedral, grain size compatibility with host rock, few inclusions); (d) pegmatitic (large subhedral to euhedral grains, associated with aplite-pegmatite contacts or pegmatitic portion alone); and Type 3 Metasomatic (spatially related to structural discontinuities in host, replacement of feldspar and/or biotite, intergrowths with quartz). Of these, Type 2a (peritectic) and Type 2c (cotectic) predominate in granitic and rhyolitic rocks derived from fluid-undersaturated peraluminous magmas, and Type 2d (pegmatitic) may be the most common type in fluid-saturated systems.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. N. and Clarke, D. B. (1979) Hypothetical liquid relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for a(H2O) 1. Can. Mineral., 17, 549–60.Google Scholar
Armbruster, T. and Bloss, F. D. (1982) Orientation and effects of channel H2O and CO2 in cordierite. Amer. Mineral, 67, 284–91.Google Scholar
Barker, D. S. (1987) Rhyolites contaminated with metapelite and gabbro, Lipari, Aeolian Islands, Italy; products of lower crustal fusion or of assimilation plus fractional crystallization. Contrib. Mineral. Petrol, 97, 460–72.CrossRefGoogle Scholar
Birch, W. D. and Gleadow, A. J. W. (1974) The genesis of garnets and cordierite in acid volcanic rocks: evidence from the Cerberean Cauldron, Central Victoria, Australia. Contrib. Mineral. Petrol, 45, 1–13.CrossRefGoogle Scholar
Brammall, A. and Harwood, H. F. (1932) The Dartmoor granites: their genetic relationships. Q. J. Geol. Soc. Land., 88, 171–237.CrossRefGoogle Scholar
Cerny, P. and Povondra, P. (1967) Cordierite in West-Moravian desilicated pegmatites. Acta Universitatis Carolinae — Geologica, 3, 203–21.Google Scholar
Cerny, P., Jak£s, P. and Cerna, I. (1967) Pseudographic cordierite-quartz intergrowths in pegmatites and metamorphic rocks. Ada Universitatis Carolinae — Geologica, 2, 133–51.Google Scholar
Chappell, B. W., White, A. J. R. and Wyborn, D. (1987) The importance of residual source material (restite) in granite petrogenesis. J. Petrol., 28, 1111–38.CrossRefGoogle Scholar
Clarke, D. B. (1981a) Peraluminous Granites. Can. Mineral., 19, 1–2.Google Scholar
Clarke, D. B. (1981b) The mineralogy of peraluminous granites: a review. Can. Mineral., 19, 3–17.Google Scholar
Clemens, J. D. and Wall, V. J. (1984) Origin and evolution of a peraluminous silicic ignimbrite suite: the Violet Town volcanics. Contrib. Mineral. Petrol, 88, 354–71.CrossRefGoogle Scholar
Clemens, J. D. and WALL, V. J. (1988) Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos, 21, 53–66.CrossRefGoogle Scholar
D'Amico, C, Rottura, A., Maccarrone, E. and Puglisi, G. (1981) Peraluminous granitic suite of Calabria-Peloritani arc. Rendiconti Soc. Ital. Mineral. Petrol., 38, 35–52.Google Scholar
Didier, J. and Dupraz, J. (1985) Magmatic and metasomatic cordierites in the Velay granitic massif. In The crust; the significance of granite-gneisses in the lithosphere (Wu, L., Yang, T., Yuan, K., Didier, J., Greenberg, J. K., Lowell, G. R., Xia, H., Yu, S., and Augustithis, S. S., eds.) Acad. Sin., Inst. Geol., China, pp. 35–77. Theophrastus Publ., Athens, Greece.Google Scholar
Ellis, D. J. and Obata, M. (1992) Migmatite and melt segregation at Cooma, New South Wales. Trans. Roy. Soc. Edinburgh, Earth Sci., 83, 95–106.CrossRefGoogle Scholar
Fang, Q. and He, S. (1985) Application of cordierite-garnet geothermo-barometer to Darongshan S-type granite. In The crust; the significance of granite-gneisses in the lithosphere (Wu, L., Yang, T., Yuan, K., Didier, J., Greenberg, J. K., Lowell, G. R., Xia, H., Yu, S., and Augustithis, S. S., eds.) Acad. Sin., Inst. Geol., China, pp. 463-78. Theophrastus Publ., Athens, Greece.Google Scholar
Goad, B. E. and Cerny, P. (1981) Peraluminous pegmatitic granites and their pegmatitic aureoles in the Winnipeg River District, southeastern Manitoba. Can. Mineral., 19, 177–94.Google Scholar
Gordillo, C. E. (1984) Migmatitas cordieriticas de la Sierra de Cordoba; condiciones fisicas de la migmaticion. Academia Nacional de Ciencias (Cordoba, Argentina) Miscelanea, No. 68, 3–40.Google Scholar
Gordillo, C. E., Schreyer, W., Werding, G. and Abraham, K. (1985) Lithium in NaBe-cordierites from El Penon, Sierra de Cordoba, Argentina. Contrib. Mineral. Petrol, 90, 93–101.CrossRefGoogle Scholar
Grant, J. A. (1985) Phase equilibria in partial melting of pelitic rocks. In Migmatites (J. R. Ashworth, ed.), Blackie and Son, Glasgow, pp. 86-144.Google Scholar
Green, T. H. (1976) Experimental generation of cordierite-or garnet-bearing granitic liquids from a pelitic composition. Geology, 4, 85–8.2.0.CO;2>CrossRefGoogle Scholar
Halliday, A. N., Stephens, W. E. and Harmon, R. S. (1981) Isotopic and chemical constraints on the development of peraluminous Caledonian and Acadian granites. Can. Mineral, 19, 205–16.Google Scholar
Heinrich, E. W. (1950) Cordierite in pegmatite near Micanite, Colorado. Amer. Mineral, 35, 173–84.Google Scholar
Hensen, B J. and Green, D. H. (1973) Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and tempera-tures: III, synthesis of experimental data and geological applications. Contrib. Mineral. Petrol, 38, 151–66.CrossRefGoogle Scholar
Hoffer, E. and Grant, J. A. (1980) Experimental investigation of the formation of cordierite-orthopyr-oxene parageneses in pelitic rocks. Contrib. Mineral. Petrol, 73, 15–22.CrossRefGoogle Scholar
Jamieson, R. A. (1984) Low pressure cordierite-bearing migmatites from Kelly's Mountain, Nova Scotia. Contrib. Mineral. Petrol, 86, 309–20.CrossRefGoogle Scholar
Jones, K. A. and Brown, M. (1990) High-temperature ‘clockwise’ P-T paths and melting in the development of regional migmatites: an example from southern Brittany, France. J. Metam. Geol, 8, 551–78.CrossRefGoogle Scholar
London, D. (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Can. Mineral, 30, 499–540.Google Scholar
MacDonald, M. A. and Home, R. J. (1988) Petrology of the zoned, peraluminous Halifax Pluton, south-central Nova Scotia. Maritime Sediments and Atlantic Geology, 24, 33–45.Google Scholar
Maillet, L. A. and Clarke, D. B. (1985) Cordierite in the peraluminous granites of the Meguma Zone, Nova Scotia, Canada. Mineral. Mag., 49, 695–702.CrossRefGoogle Scholar
Miyashiro, A. (1957) Cordierite-indialite relations. Amer. J. Sci., 255, 43–62.CrossRefGoogle Scholar
Morin, J. A. and Turnock, A. C. (1975) The clotty granite at Perrault Falls, Ontario, Canada. Can. Mineral, 13, 352–7.Google Scholar
Patiiio Douce, A. E. (1992) Calculated relationships between activity of alumina and phase assemblages of silica-saturated igneous rocks; petrogenetic implications of magmatic cordierite, garnet and aluminosilicate. J. Volcanol. Geotherm. Res., 52, 43–63.CrossRefGoogle Scholar
Phillips, G. N., Wall, V. J. and Clemens, J. D. (1981) Petrology of the Strathbogie Batholith: a cordierite-bearing granite. Can. Mineral, 19, 47–63.Google Scholar
Povondra, P., Cech, F. and Burke, E. A. J. (1984) Sodian-beryllian cordierite from Gammelmorskaerr, Kemio Island, Finland, and its decomposition products. Neues Jahrb. Mineral, Mh., 125-36.Google Scholar
Propach, G. and Gillessen, B. (1984) Petrology of garnet-, spinel-, and sillimanite-bearing granites from the Bavarian Forest, West Germany. Tscherm. Mineral. Petrog. Mitt., 33, 67–75.CrossRefGoogle Scholar
Schumacher, J. C. (1990) Reactions, textures, and mineral chemistry at the contact of a sillimanite-cordierite pegmatite and gedrite-cordierite gneiss from southwestern New Hampshire, USA. Geol. Soc. Amer., Abstracts with Programs 22, (7), 125.Google Scholar
Speer, J. A. (1981) Petrology of cordierite-and almandine-bearing granitoid plutons of the southern Appalachian Piedmont U.S.A. Can. Mineral., 19, 35–46.Google Scholar
StanSk, J. (1954) Petrographie a mineralogie pegmati-tovych zil u Dolnich Boru. Prace Brnenske zakl. Ceskoslovenske Akad. Ved, 26, 7, 1–43. (in Czech)Google Scholar
Stanek, J. (1991) The mineral parageneses of the Dolni Bory-Hate pegmatite dykes, western Moravia, Czechoslovakia. Ada Mus. Moraviae, Sci. nat., 76, 19–49. (in Czech)Google Scholar
Thomson, J. A. (1989) Cordierite pegmatites and pelitic gneisses in the granulite facies, south-central Massachusetts: constructing part of a P-T path. Geol. Soc. Amer. Abstracts with Programs 21, 285.Google Scholar
Tracy, R. and Robinson, P. (1983) Acadian migmatite types in pelitic rocks of Central Massachusetts. In Migmatites, melting and metamorphism (M. P. Atherton and C. D. Gribble, eds.) Shiva Publishing, Nantwich, 163-73.Google Scholar
Ugidos, J. M. (1988) New aspects and considerations on the assimilation of cordierite-bearing rocks. Rev. Soc. Geol. Espaiia, 1, 129–33.Google Scholar
Ugidos, J. M. (1990) Granites as a paradigm of genetic processes of granitic rocks: I-types vs S-types. In Pre-Mesozoic Geology of Iberia (R. D. Dallmayer and E. Martinez Garcia, eds.) Springer-Verlag, Berlin, 173-84.Google Scholar
Ugidos, J. M. and Recio, C. (1993) Origin of cordierite-bearing granites by assimilation in the Central Iberian Massif (CIM), Spain. Chem. Geol, 103, 27–43.CrossRefGoogle Scholar
Vernon, R. H. and Collins, W. J. (1988) Igneous microstructure in migmatites. Geology, 16, 1126–9.2.3.CO;2>CrossRefGoogle Scholar
Vielzeuf, D. and Holloway, J. R. (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol., 98, 257–76.CrossRefGoogle Scholar
Wall, V. J., Clemens, J. D. and Clarke, D. B. (1987) Models for granitoid evolution and source compositions. J. Geol., 95, 731–49.CrossRefGoogle Scholar
Weber, C, Pichavant, M. and Barbey, P. (1985) La cordierite dans le domaine anatectique du Velay (Massif Central Francais); un marqueur de l'anatex-ie, du magmatisme et de I'hydrothermalisme. Comptes Rendus de I'Academie des Sciences, Serie 2. Mecanique, Physique, Chimie, Sciences de I'Univers, Sciences de la Terre, 301(5), 303-8.Google Scholar
White, A. (1989) Cordierite-muscovite relationships in granites. In, Miller, C. F., FROGS (Friends of Granite) Report Winter 1989, £05, Trans. Amer. Geophys. Union, If), 110-1.Google Scholar
Zeck, H. P. (1970) An erupted migmatite from Cerro del Hoyazo, SE Spain. Contrib. Mineral. Petrol., 26, 225–46.CrossRefGoogle Scholar
Zeck, H. P. (1992) Restite-melt and mafic-felsic magma mixing and mingling in an S-type dacite, Cerro del Hoyazo, southeastern Spain. Trans. Roy. Soc. Edinburgh, 83, 139–44.Google Scholar
Zen, E-An (1988) Phase relations of peraluminous granitic rocks and their petrogenetic implications. Ann. Rev. Earth Planet. Sci., 16, 21–51.CrossRefGoogle Scholar
Zen, E-An (1989) Wet and dry AFM mineral assemblages of strongly peraluminous granites. In, Miller, C. F., FROGS (Friends of Granite) Report Winter 1989. EOS, Trans. Amer. Geophys. Union, 70, 109–10.Google Scholar