Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-30T21:37:02.082Z Has data issue: false hasContentIssue false

Contrasting assemblages of secondary minerals after beryl from the granitic pegmatites Drahonín IV and Věžná I; evidence for high variability of mineralised fluids in the Rožná-Olší ore field area, Czech Republic

Published online by Cambridge University Press:  27 December 2024

Milan Novák
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Petr Gadas
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Kamil Sobek
Affiliation:
Department of Material Analysis, Research Centre Řež, Hlavní 130, Husinec-Řež, CZ-250 68
Jiří Toman*
Affiliation:
Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, CZ-659 37 Brno, Czech Republic
Drahoš Šikola
Affiliation:
Diamo, S. E., Branch GEAM, CZ-592 51 Dolní Rožínka, Czech Republic
*
Corresponding author: Jiří Toman; Email: [email protected]

Abstract

This work presents data for the mineral assemblages, composition and Raman spectroscopy of proximal secondary Be and associated minerals in pseudomorphs after beryl from granitic pegmatites located along the contacts of major regional geological units. The pegmatites differ in their position relative to the ductile to brittle shear zones within the Rožná-Olší ore field (U-deposit), Czech Republic. Extensive dissolution of beryl crystals in the beryl–columbite pegmatites Drahonín IV and Věžná I situated within or close to the shear zones is evident in contrast to minor alteration of beryl in the Dolní Rožínka and Kovářová pegmatites located outside of the shear zones. Near-total replacement of beryl crystals, up to 40 cm in length, from the Drahonín IV pegmatite, located in the Olší shear zone formed the following secondary Be minerals in order of their abundance: bavenite–bohseite > bertrandite ≫ milarite > hydroxylgugiaite. This assemblage is also characterised by the presence of sulfides (pyrite, galena, sphalerite) and zeolites. Such an extensive replacement process required a substantial fluid flow and is very possibly related to the pre-uranium quartz–sulfide and carbonate–sulfide mineralisation events within the Rožná-Olší ore field. Alteration products resulting from breakdown of beryl in the Věžná I pegmatite follow the sequential substages (bertrandite + K-feldspar ± harmotome → epididymite + K-feldspar → hydroxylgugiaite + K-feldspar) and locally show cross-cutting textures. These assemblages were generated by post-magmatic residual fluids (early assemblage bertrandite + K-feldspar) as well as fluids related to a retrograde stage of metamorphism, compositionally contrasting with the host serpentinite, and perhaps also hydrothermal processes associated with the Olší shear zone. The pegmatites Dolní Rožínka and Kovářová, located outside of the shear zones, exhibit only a low degree of alteration and have differing textural and paragenetic development. Highly variable assemblages of secondary minerals after beryl are excellent mineral indicators of hydrothermal overprinting in granitic pegmatites during a variety of subsolidus processes.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Elena Zhitova

Dedicated to the memory of Dr. Alessandro Guastoni

References

Ackerman, L., Zachariáš, J. and Pudilová, M. (2007) P–T and fluid evolution of barren and lithium pegmatites from Vlastějovice, Bohemian Massif, Czech Republic. International Journal of Earth Sciences, 96, 623638.CrossRefGoogle Scholar
Ackerman, L., Haluzová, E., Creaser, R.A., Pašava, J., Veselovský, F., Breiter, K., Erban, V. and Drábek, M. (2017) Temporal evolution of mineralization events in the Bohemian Massif inferred from the Re–Os geochronology of molybdenite. Mineralium Deposita, 52, 651662.CrossRefGoogle Scholar
Araujo, P.F., Hulsbosch, N. and Muchez, P. (2020) High spatial resolution Raman mapping of complex mineral assemblages: Application on phosphate mineral sequences in pegmatites. Journal of Raman Spectroscopy, 52, 690708, https://doi.org/10.1002/jrs.6040CrossRefGoogle Scholar
Barton, M. (1986) Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O (BASH) system, with petrologic applications. American Mineralogist, 71, 277300.Google Scholar
Barton, M. and Young, S. (2002) Non-pegmatitic deposits of beryllium: mineralogy, geology, phase equilibria and origin. Pp. 591691 in: Beryllium – Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Buriánek, D. and Novák, M. (2007) Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: Examples from the Bohemian Massif, Czech Republic. Lithos, 95, 148164.CrossRefGoogle Scholar
Buriánek, D., Dolníček, Z. and Novák, M. (2016) Textural and compositional evidence for a polyphase saturation of tourmaline in granitic rocks from the Třebíč pluton (Bohemian massif). Journal of Geosciences, 61, 309334.CrossRefGoogle Scholar
Buřival, Z. and Novák, M. (2018) Secondary blue tourmaline after garnet from elbaite-subtype pegmatites; implications for source and behaviour of Ca and Mg in fluids. Journal of Geosciences, 63, 111122.CrossRefGoogle Scholar
Burnham, C. W. and Nekvasil, H. (1986) Equilibrium properties of granite pegmatite magmas. American Mineralogist, 71, 239263.Google Scholar
Burt, D. (1978) Multisystems analysis of beryllium mineral stabilities: the system BeO-Al2O3-SiO2-H2O. American Mineralogist, 63, 664676.Google Scholar
Cempírek, J., Novák, M., Dolníček, Z., Kotková, J. and Škoda, R. (2010) Crystal chemistry and origin of grandidierite, ominelite, boralsilite, and werdingite from the Bory Granulite Massif, Czech Republic. American Mineralogist, 95, 15331547.CrossRefGoogle Scholar
Černý, P. (1963) Epididymite and milarite – alteration products of beryl from Věžná, Czechoslovakia. Mineralogical Magazine, 33, 450457.CrossRefGoogle Scholar
Černý, P. (1965) Mineralogy of two Pegmatites from the Věžná Serpentinite. CSc thesis, Geological Institute of the ČSAV Prague, Prague, Czechoslovakia. Pp. 1177 [in Czech].Google Scholar
Černý, P. (1968) Berylliumwandlungen in Pegmatiten - Verlauf und Produkte. Neues Jahrbuch für Mineralogie, Abhandlungen, 108, 166180.Google Scholar
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Pp. 405444 in: Beryllium – Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 20052026.CrossRefGoogle Scholar
Černý, P. and Miškovský, L. (1966) Ferroan phlogopite and magnesium vermiculite from Věžná, Westrn Moravia. Acta Universitatis Carolinae, Geologica, 2, 1732.Google Scholar
Černý, P. and Povondra, P. (1966) Beryllian cordierite from Věžná: (Na,K) + Be=Al. Neues Jahrbuch für Mineralogie, Monatshefte, 1966, 3644.Google Scholar
Černý, P. and Povondra, P. (1967) Cordierite in West-Moravian desilicated pegmatites. Acta Universitatis Carolinae, Geologica, 3, 203221.Google Scholar
Černý, P., Smith, J.V Mason, R.A. and Delaney, J.S. (1984) Geochemistry and petrology of feldspar crystallization in the Vezna pegmatite, Czechoslovakia. The Canadian Mineralogist, 22, 631651.Google Scholar
Černý, P., Novák, M. and Chapman, R. (1992) Effects of sillimanite-grade metamorphism and shearing on Nb-Ta oxide minerals in granitic pegmatites: Maršíkov, Northern Moravia, Czechoslovakia. The Canadian Mineralogist, 30, 699718.Google Scholar
Černý, P., Novák, M. and Chapman, R. (2000) Subsolidus behavior of niobian rutile from Věžná, Czech Republic: a model for exsolution in phases with Fe2+ ≫ Fe3+. Journal of the Czech Geological Society, 45, 2135.Google Scholar
Černý, P., Anderson, A.J., Tomascak, P.B. and Chapman, R. (2003) Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe. The Canadian Mineralogist, 41, 10031011CrossRefGoogle Scholar
Černý, P., London, D. and Novák, M. (2012) Granitic pegmatites as reflection of their sources. Elements, 8, 289294CrossRefGoogle Scholar
Chipera, S.J. and Apps, J.A. (2001) Geochemical stability of natural zeolites. Pp. 117161 in: Natural Zeolites: Occurrences, Properties, Applications (Bish, D.L. and Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Chládek, Š., Uher, P., Novák, M., Bačík, P. and Opletal, T. (2021) Microlite-group minerals: tracers of complex post-magmatic evolution in beryl–columbite granitic pegmatites, Maršíkov District, Bohemian Massif, Czech Republic. Mineralogical Magazine, 85, 725743.CrossRefGoogle Scholar
Chládek, Š., Novák, M., Uher, P., Gadas, P., Matýsek, D., Bačík, P. and Škoda, R. (2024) Evolution of beryllium minerals in granitic pegmatite Maršíkov D6e, Czech Republic: Complex breakdown of primary beryl by internal and external hydrothermal-metamorphic fluids. Geochemistry, 126092.CrossRefGoogle Scholar
Čopjaková, R., Prokop, J., Novák, M., Losos, Z. and Gadas, P. (2021) Hydrothermal alterations of tourmaline from pegmatitic rocks enclosed in serpentinites; multistage processes with distinct fluid sources. Lithos, 380, 105823.CrossRefGoogle Scholar
Dosbaba, M. and Novák, M. (2012) Quartz replacement by “kerolite” in graphic quartz-feldspar intergrowths from the Věžná I pegmatite, Czech Republic; A complex desilicification process related to episyenitization. The Canadian Mineralogist, 50, 16091622.CrossRefGoogle Scholar
Franz, G. and Morteani, G. (2002) Be-minerals synthesis, stability, and occurrence in metamorphic rocks. Pp. 551598 in: Beryllium – Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Frey, M. and Robinson, D. (editors) (2009) Low-Grade Metamorphism. John Wiley & Sons.Google Scholar
Gadas, P., Novák, M., Szuskiewicz, A., Szeleg, E., Galiová, M.V. and Haifler, J. (2016) Manganoan Na, Be, Li-rich sekaninaite from miarolitic pegmatite at Zimnik, Strzegom-Sobótka Massif, Sudetes, Poland. The Canadian Mineralogist, 54, 971987.CrossRefGoogle Scholar
Gadas, P., Novák, M., Galiová, M.V., Szuszkiewicz, A., Pieczka, A., Haifler, J. and Cempírek, J. (2020) Secondary beryl in cordierite/sekaninaite pseudomorphs from granitic pegmatites – a monitor of elevated content of beryllium in the precursor. The Canadian Mineralogist, 58, 785802.CrossRefGoogle Scholar
Grew, E.S. (2002) Beryllium in metamorphic environments (emphasis on aluminous compositions). Pp. 487549 in: Beryllium – Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Grew, E.S., McGee, J.J., Yates, M.G., Peacor, D.R., Rouse, R.C, Huijsmans, J.P.P., Shearer, C.K., Wiedenbeck, M., Thost, D.E. and Su, S.-C. (1998) Boralsilite (Al16B6Si2O37): A new mineral related to sillimanite from pegmatites in granulite-facies rocks. American Mineralogist, 83, 638651.CrossRefGoogle Scholar
Grice, J., Kristiansen, R., Friis, H., Rowe, R., Cooper, M., Poirier, G., Yang, P. and Weller, M. (2017) Hydroxylgugiaite: a new beryllium silicate mineral from the Larvik plutonic complex, southern Norway and the Ilímaussaq alkaline complex, south Greenland; the first member of the melilite group to incorporate a hydrogen atom. The Canadian Mineralogist, 55, 219232, https://doi.org/10.3749/canmin.1700002CrossRefGoogle Scholar
Groppo, C., Rinaudo, C., Cairo, S., Gastaldi, D. and Compagnoni, R. (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. European Journal of Mineralogy, 18, 319329, https://doi.org/10.1127/0935–1221/2006/0018-0319CrossRefGoogle Scholar
Guy, A., Edel, J., Schulmann, K., Tomek, Č. and Lexa, O. (2011) A geophysical Model of the Variscan orogenic root (Bohemian Massif): Implications for Modern Collisional Orogens. Lithos, 124, 144157.CrossRefGoogle Scholar
Hsu, L.C. (1983) Some phase relationships in the system BeO-Al2O3-SiO2-H2O with comments on effects of HF. Geological Society China Memoire, 5, 3346.Google Scholar
Huy, L.H., Nguyen, M.T.H., Chen, B-X., Ming, V.N. and Yang, S.I. (2011) Raman spectroscopy study of various types of tourmalines. Journal of Raman Spectroscopy, 42, 14421446.Google Scholar
Janoušek, V., Hanžl, P., Svojtka, M., Hora, J.M., Kochergina Erban, Y.V., Gadas, P., Holub, J.V., Gerdes, A., Verner, K., Hrdličková, K., Daly, J.S. and Buriánek, D. (2020) Ultrapotassic magmatism in the heyday of the Variscan Orogeny: the story of the Třebíč Pluton, the largest durbachitic body in the Bohemian Massiff. International Journal of Earth Sciences, 109, 17671810.CrossRefGoogle Scholar
Jiang, S-Y., Yang, J.H., Novák, M., and Selway, J.B. (2003) Chemical and boron isotopic compositions of tourmaline from the Lavičky leucogranite, Czech Republic. Geochemical Journal, 37, 545556.CrossRefGoogle Scholar
Kotková, J. (2007) High-pressure granulites of the Bohemian Massif: recent advances and open questions. Journal of Geosciences, 52, 4571.Google Scholar
Kříbek, B., Žák, K., Dobeš, P., Leichmann, J., Pudilová, M., René, M., Scharm, B., Scharmová, M., Hájek, A., Holeczy, D., Hein, U.F. and Lehmann, B. (2009) The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Mineralium Deposita, 44, 99.CrossRefGoogle Scholar
Kubeš, M., Leichmann, J., Wertich, V., Mozola, J., Holá, M., Kanický, V. and Škoda, R. (2021) Metamictization and fluid-driven alteration triggering massive HFSE and REE mobilization from zircon and titanite: Direct evidence from EMPA imaging and LA-ICP-MS analyses. Chemical Geology, 586, 120593.CrossRefGoogle Scholar
Kubeš, M., Leichmann, J., Buriánek, D., Holá, M., Navrátil, P., Scaillet, S. and O’Sullivan, P. (2022) Highly evolved miaskitic syenites deciphering the origin and nature of enriched mantle source of ultrapotassic magmatism in the Variscan orogenic root (Bohemian Massif, Moldanubian Zone). Lithos, 432–433, 106890, https://doi.org/10.1016/j.lithos.2022.106890.CrossRefGoogle Scholar
Kubeš, M., Leichmann, J., Wertich, V., Čopjaková, R., Holá, M., Škoda, R., Kříbek, B., Mercadier, J., Cuney, M., Deloule, E., Lecomte, A. and Krzemińska, E. (2024) Ultrapotassic plutons as a source of uranium of vein-type U-deposits (Moldanubian Zone, Bohemian Massif): insights from SIMS uraninite U–Pb dating and trace element geochemistry. Mineralium Deposita, 59, 1325-1362.CrossRefGoogle Scholar
Lafuente, B., Downs, R., Yang, H. and Stone, N. (2015) 1 . The power of databases: The RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R. (editors). De Gruyter (O), Berlin, München, Boston.Google Scholar
Leichmann, J., Gnojek, I., Novák, M., Sedlák, J. and Houzar, S. (2017) Durbachites from the Eastern Moldanubicum (Bohemian Massif): erosional relics of large, flat tabular intrusions of ultrapotassic melts–geophysical and petrological record. International Journal of Earth Sciences, 106, 5977.CrossRefGoogle Scholar
Libowitzky, E (1999) Correlation of O–H stretching frequencies and O-H· · ·O hydrogen bond lengths in minerals. Monatshefte fiir Chemie, 130, 10471059.CrossRefGoogle Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist, Special Publication, 10. Pp. 1347.Google Scholar
London, D. (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos, 184–187, 74104.CrossRefGoogle Scholar
London, D. and Evensen, M.J. (2002) Beryllium in silicic magmas and the origin of beryl-bearing pegmatites. Pp. 445486 in: Beryllium – Mineralogy, Petrology and Geochemistry (Grew, E.S., editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Markl, G. and Schumacher, J. (1997) Beryl stability in local hydrothermal and chemical environments in a mineralized granite. American Mineralogist, 82, 195203.CrossRefGoogle Scholar
Martin, R.F. and De Vito, C.D. (2014) The late-stage miniflood of Ca in granitic pegmatites: an open-system acid-reflux model involving plagioclase in the exocontact. The Canadian Mineralogist, 52, 165181.CrossRefGoogle Scholar
Melleton, J., Gloaguen, E., Frei, D., Novák, M. and Breiter, K. (2012) How are the time of emplacement of rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian Domain of Variscan Bohemian Massif, Czech Republic. The Canadian Mineralogist, 50, 17511773.CrossRefGoogle Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimical Acta, 114/115, 363376.CrossRefGoogle Scholar
Němec, D. (1990) Neues zur Mineralogie eines Hambergit-führenden Pegmatitgangs von Kracovice (bei Třebíč, Westmorava, ČSFR). Zeitschrift Geologische Wissenschaften, 18, 11051115.Google Scholar
Novák, M. (1998) Fibrous blue dravite; an indicator of fluid composition during subsolidus replacement processes in Li-poor granitic pegmatites in the Moldanubicum, Czech Republic. Journal of Geosciences, 43, 2430.Google Scholar
Novák, M. and Filip, J. (2010) Unusual (Na,Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč Pluton, Czech Republic. The Canadian Mineralogist, 48, 615628.CrossRefGoogle Scholar
Novák, M. and Cempírek, J. (2010) Granitic pegmatites and mineralogical museums in the Czech Republic. IMA2010. Field trip guide CZ2. Acta Mineralogica-Petrographica, Field guide series, 6, 156.Google Scholar
Novák, M., Korbel, P. and Odehnal, F. (1991) Pseudomorphs of bertrandite and epididymite after beryl from Věžná, Western Moravia, Czechoslovakia. Neues Jahrbuch für Mineralogie, Monatshefte, 1991, 473480.Google Scholar
Novák, M., Černý, P., Kimbrough, D.L., Taylor, M.C. and Ercit, T.S. (1998) U-Pb ages of monazite from granitic pegmatites in the Moldanubian Zone and their geological implications. Acta Universitatis Carolinae, Geologica, 42, 309310.Google Scholar
Novák, M., Škoda, R., Gadas, P., Krmíček, L. and Černý, P. (2012) Contrasting origins of the mixed (NYF+LCT) signature in granitic pegmatites, with examples from the Moldanubian Zone, Czech Republic. The Canadian Mineralogist, 50, 10771094.CrossRefGoogle Scholar
Novák, M., Kadlec, T. and Gadas, P. (2013) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. Journal of Geosciences, 58, 2147.CrossRefGoogle Scholar
Novák, M., Čopjaková, R., Dosbaba, M., Galiová, M.V., Všianský, D. and Staněk, J. (2015a) Two paragenetic types of cookeite from the Dolní Bory-Hatě pegmatites, Moldanubian Zone, Czech Republic: Proximal and distal alteration products of Li-bearing sekaninaite. The Canadian Mineralogist, 53, 10351048.CrossRefGoogle Scholar
Novák, M., Gadas, P., Cempírek, J., Škoda, R., Breiter, K., Kadlec, T., Loun, J. and Toman, J. (2015b) B1 Granitic pegmatites of the Moldanubian Zone, Czech Republic. PEG 2015: 7th International Symposium on Granitic Pegmatites, Field trip guidebook, 2372.Google Scholar
Novák, M., Prokop, J., Losos, Z. and Macek, I. (2017) Tourmaline, an indicator of external Mg-contamination of granitic pegmatites from host serpentinite; examples from the Moldanubian Zone, Czech Republic. Mineralogy and Petrology, 111, 625641.CrossRefGoogle Scholar
Novák, M., Dolníček, Z., Zachař, A., Gadas, P., Nepejchal, M., Sobek, K., Škoda, R. and Vrtiška, L. (2023a) Mineral assemblages and compositional variations in bavenite–bohseite from granitic pegmatites of the Bohemian Massif, Czech Republic. Mineralogical Magazine, 87, 415432.CrossRefGoogle Scholar
Novák, M., Toman, J., Škoda, R., Šikola, D. and Mazuch, J. (2023b) Review of zeolite mineralizations from the high-grade metamorphosed Strazek Unit, Moldanubian Zone, Czech Republic. Journal of Geosciences, 68, 111138.CrossRefGoogle Scholar
Novotný, F. and Cempírek, J. (2021) Mineralogy of the elbaite-subtype pegmatite from Dolní Rožínka. Acta Musei Moraviae, Scientiae Geologicae, 1, 133 [in Czech with English summary].Google Scholar
Palinkaš, S.S., Wegner, R., Čobić, A., Palinkaš, L.A., Barreto, S.D.B., Váczi, T. and Bermanec, V. (2014) The role of magmatic and hydrothermal processes in the evolution of Be-bearing pegmatites: Evidence from beryl and its breakdown products. American Mineralogist, 99, 424432.CrossRefGoogle Scholar
Pauliš, P. and Cempírek, J. (1998) Harmotome and chabazite from desilicated pegmatite in Věžná near Bystřice nad Pernštejnem. Vlastivěd Sborník Vysočiny, Oddělení Vědy přírodní, 13, 349350 [in Czech].Google Scholar
Perrotta, A.J. (1976) A low-temperature synthesis of a harmotome-type zeolite. American Mineralogist, 61, 495496.Google Scholar
Pertoldová, J., Týcová, P., Verner, K., Košuličová, M., Pertold, Z., Košler, J., Konopásek, J. and Pudilová, M. (2009) Metamorphic history of skarns, origin of their protolith and implications for genetic interpretation; an example from three units of the Bohemian Massif. Journal of Geosciences, 54, 101134.Google Scholar
Pertoldová, J., Verner, K., Vrána, S., Buriánek, D., Štědrá, V. and Vondrovic, L. (2010) Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: implications for geodynamic evolution in the northeastern part of the Bohemian Massif. Journal of Geosciences, 55, 299319.Google Scholar
Pieczka, A., Szuskiewicz, A., Szełeg, E. and Nejbert, K. (2019) Calcium minerals and late stage metasomatism in the Julianna pegmatitic system, the Góry Sowie Block, SW Poland. Contributions to the 9th international Symposium PEG 2019, 5658.CrossRefGoogle Scholar
Přikryl, J., Novák, M. and Gadas, P. (2012) Compositional variations in Cs,Mg,Fe-enriched beryl from common pegmatite in Kovářová, Svratka Unit, Czech Republic. Acta Mineralogica-Petrographica, Abstract Series, Szeged 7, 112.Google Scholar
Přikryl, J., Novák, M., Filip, J., Gadas, P. and Galiová, M.V. (2014) Iron+Magnesium-bearing beryl from granitic pegmatites: An EMPA, LA-ICP-MS, Mössbauer spectroscopy, and powder XRD study. The Canadian Mineralogist, 52, 271284.CrossRefGoogle Scholar
Rybnikova, O., Uher, P., Novák, M., Chládek, Š., Bačík, P., Kurylo, S. and Vaculovič, T. (2023) Chrysoberyl and associated beryllium minerals resulting from metamorphic overprinting of the Maršíkov–Schinderhübel III pegmatite, Czech Republic. Mineralogical Magazine, 87, 369381.CrossRefGoogle Scholar
Schulmann, K., Lexa, O., Janoušek, V., Lardeaux, J.M. and Edel, J.B. (2014) Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides. Geology, 42, 275278.CrossRefGoogle Scholar
Schulz, B., Sandmann, D. and Gilbricht, S. (2020) SEM-based automated mineralogy and its application in geo- and material sciences. Minerals, 10,1004, https://doi.org/10.3390/min10111004CrossRefGoogle Scholar
Sharma, K.S., Yoder, S.H. Jr. and Matson, W.D. (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52, 19611967, https://doi.org/10.1016/0016-7037(88)90177-9CrossRefGoogle Scholar
Sejkora, J., Pauliš, P., Dolníček, Z., Plášil, J. and Škoda, R. (2023) Zeolites from the quarry Bernartice in near Zruč nad Sázavou (Czech Republic). Acta Musei Moraviae, Scientiae geologicae, 108, 171193 [with English summary].Google Scholar
Sojka, A. (1969) Mineralogical and Textural/Paragenetic Relations in Pegmatites from Ore-Deposit Olší. Unpublished Ms thesis, Masaryk University, Brno. Pp. 176 [in Czech].Google Scholar
Štípská, P., Powell, R., Hacker, B.R., Holder, R. and Kylander‐Clark, A.R.C. (2016) Uncoupled U/Pb and REE response in zircon during the transformation of eclogite to mafic and intermediate granulite (Blanský les, Bohemian Massif). Journal of Metamorphic Geology, 34, 551572.CrossRefGoogle Scholar
Tajčmanová, L., Konopásek, J. and Schlumann, K. (2006) Thermal evolution of the orogenic lower crust during exhumation within a thickened Moldanubian root of the Variscan belt of central Europe. Journal of Metamorphic Geology, 24, 119134, https://doi.org/10.1111/j.1525-1314.2006.00629.x.CrossRefGoogle Scholar
Teertstra, D.K., Černý, P. and Novák, M. (1995) Compositional and textural evolution of pollucite in rare-element pegmatites of the Moldanubicum. Mineralogy and Petrology, 55, 3752.CrossRefGoogle Scholar
Thomas, R. and Davidson, P. (2012) Water in granite and pegmatite-forming melts. Ore Geology Reviews, 46, 3246.CrossRefGoogle Scholar
Thomas, R., Davidson, P., Rhede, D. and Leh, M. (2009). The miarolitic pegmatites from the Königshain: a contribution to understanding the genesis of pegmatites. Contributions to Mineralogy and Petrology, 157, 505523.CrossRefGoogle Scholar
Toman, J. and Novák, M. (2018) Textural relations and chemical composition of minerals from a pollucite + harmotome + chabazite nodule in the Věžná I pegmatite, Czech Republic. The Canadian Mineralogist, 56, 375392.CrossRefGoogle Scholar
Toman, J. and Novák, M. (2020) Beryl-columbite pegmatite Věžná I. Acta Musei Moraviae, Scientiae Geologicae, 107, 342 [in Czech with English summary].Google Scholar
Uher, P., Chudík, P., Bačík, P., Vaculovič, T. and Galiová, M. (2010) Beryl composition and evolution trends: an example from granitic pegmatites of the beryl-columbite subtype Western Carpathians Slovakia. Journal of Geosciences, 55, 6980.Google Scholar
Uher, P., Ozdín, D., Bačík, P., Števko, M., Ondrejka, M., Rybnikova, O., Chládek, Š., Fridrichová, J., Pršek, J. and Puškelová, Ľ. (2022) Phenakite and bertrandite: products of post-magmatic alteration of beryl in granitic pegmatites (Tatric Superunit, Western Carpathians, Slovakia). Mineralogical Magazine, 86, 715729.CrossRefGoogle Scholar
Veksler, I.V. and Thomas, R. (2002) An experimental study of B-, P- and F- rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contributions to Mineralogy and Petrology, 143, 673683.CrossRefGoogle Scholar
Verner, K., Buriánek, D., Vrána, S., Vondrovic, L., Pertoldová, J., Hanžl, P. and Nahodilová, R. (2009) Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone. Journal of Geosciences, 54, 87100.Google Scholar
Wang, R.C., Che, X.D., Zhang, W.L., Zhang, A.C. and Zhang, H. (2009) Geochemical evolution and late re-equilibration of Na–Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). European Journal of Mineralogy, 21, 795809.CrossRefGoogle Scholar
Wang, X. and Li, J. (2020) In situ observations of the transition between beryl and phenakite in aqueous solutions using a hydrothermal diamond-anvil cell. The Canadian Mineralogist, 58, 803814.CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Weisenberger, T. and Bucher, K. (2010) Zeolites in fissures of granites and gneisses of the Central Alps. Journal of Metamorphic Geology, 28, 825847.CrossRefGoogle Scholar
Weisenberger, T. and Bucher, K. (2011) Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the Simano nappe: Arvigo, Val Calanca, Swiss Alps. Contributions to Mineralogy and Petrology, 162, 6181.CrossRefGoogle Scholar
Wertich, V., Kubeš, M., Leichmann, J., Holá, M., Haifler, J., Mozola, J., Hršelová, P. and Jaroš, M. (2022) Trace element signatures of uraninite controlled by fluid-rock interactions: A case study from the Eastern Moldanubicum (Bohemian Massif). Journal of Geochemical Exploration, 243, 107111.CrossRefGoogle Scholar
Wise, M.A., Müller, A. and Simmons, W.B. (2022) A proposed new mineralogical classification system for granitic pegmatites. The Canadian Mineralogist, 60, 229248.CrossRefGoogle Scholar
Wood, S.A. (1992) Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300° C at saturated vapor pressure: Application to bertrandite/phenakite deposits. Ore Geology Reviews, 7, 249278.CrossRefGoogle Scholar
Zachař, A., Novák, M. and Škoda, R. (2020) Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic. Journal of Geosciences, 65, 153172.CrossRefGoogle Scholar