Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T08:11:56.507Z Has data issue: false hasContentIssue false

Comparative amphibole chemistry of the Monteregian and White Mountain alkaline suites, and the origin of amphibole megacrysts in alkali basalts and lamprophyres*

Published online by Cambridge University Press:  05 July 2018

Jean H. Bédard*
Affiliation:
Department of Earth Sciences, Cambridge University, Downing Street, Cambridge CB2 3EQ, U.K.

Abstract

Amphiboles in dykes from the dominantly silica-undersaturated Monteregian series range from pargasitic megacrysts and xenocrysts to kaersutitic, pargasitic and hastingsitic phenocrysts, groundmass prisms and reaction rims. Amphiboles in dykes and plutons from the silica-oversaturated White Mountain Magma Series range from kaersutite, through hornblende, hastingsite and edenite, to sodic-calcic and sodic varieties. This contrast between the amphiboles from the two series is probably a reflection of differing melt silica activity and is a useful petrologic discriminant. In most cases, pargasitic amphibole megacrysts from Monteregian monchiquites reflect the Mg numbers of their host rocks and are considered cognate. The megacrysts are lower in Ti and higher in Mg and Al than their phenocryst mantles and rims. This is probably a result of higher pressures of formation.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, Canada K1A 0E8.

*

Earth Sciences Contribution 981.

References

Adams, F.D. A. (1903) The Monteregian Hills-A Canadian Petrographic province. J. Geol. 11, 239–82.CrossRefGoogle Scholar
Becker, H.J. (1977) Pyroxenites and hornblendites from the maar-type volcanoes of the Westeifel, Federal Republic of Germany. Contrib. Mineral. Petrol. 65, 4552.CrossRefGoogle Scholar
Brdard, J.H. (1985a) La pétrogénése et les mbcanismes de différenciation des magmas anorogbniques: exemples de la Gaspbsie, de la Nouvelle Angleterre et des Collines Montérégiennes. Ph.D. Thesis, Universit6 de Montrral, Montrral, P.Q. Canada, 501 pp.Google Scholar
Brdard, J.H. (1985b) The opening of the Atlantic, the Mesozoic New England igneous province, and mechanisms of continental breakup. Tectonophys. 113, 209-32.CrossRefGoogle Scholar
Brdard, J.H. Machado, N., Ludden, J., and Brooks, C. (1983) The Mrgantic complex. A member of the White Mountain magma series. Trans. Am. Geophys. Union 64, 337.Google Scholar
Brdard, J.H. Francis, D.M., and Ludden, J. (1987) The Mrgantic intrusive Complex, Qurbec: A study of the derivation of silica-oversaturated anorogenic magmas of alkaline affinity. J. Petrol. 28, 355–88.CrossRefGoogle Scholar
Brdard, J.H. (1988) Petrology and pyroxene chemistry of Monteregian dykes, and the origin of green pyroxene cores in alkali basalts and lamprophyres. Submitted to Can. J. Earth Sci. CrossRefGoogle Scholar
Best, M.G. (1974) Mantle-derived amphibole within inclusions in alkalic-basaltic lavas. J. Geophys. Res. 79, 2107–13.CrossRefGoogle Scholar
Billings, M.P. (1928) The chemistry, optics and genesis of the hastingsite group of amphiboles. Am. Mineral. 13, 287–96.Google Scholar
Brooks, C.K., and Platt, J.G. (1975) Kaersutite-bearing gabbroic inclusions and the late dike swarm of Kangerdlugssuaq, East Greenland. Mineral. Mag. 40, 259–83.CrossRefGoogle Scholar
Cawthorn, R.G. (1976) Some chemical controls on igneous amphibole compositions. Geochim. Cosmochim. Acta 40, 131-92.CrossRefGoogle Scholar
Chapman, C.A. (1976) Structural evolution of the White Mountain magma series. In Studies in New England Geology (Lyons, P.C., and Brownlow, A.H., eds.). Geol. Soc. Am. Memoir 146, 281–300.Google Scholar
Chapman, R.M. (1942) Ring structures of the Pliny region, New Hampshire. Bull. Geol. Soc. Am. 53, 1533–67.CrossRefGoogle Scholar
Chapman, R.M. and Williams, C.R. (1935) Evolution of the White Mountain magma series. Am. Mineral. 20, 502-30.Google Scholar
Creasy, J.W. (1974) Mineralogy and petrology of the White Mountain Batholith, Franconia and Crawford Notch Quadrangles, New Hampshire. Ph.D. Thesis, Harvard University, Cambridge, Mass., 430 pp.Google Scholar
Currie, K.L., Eby, G.N., and Gittins, J. (1986) The petrology of the Mont Saint Hilaire complex, southern Qurbec: An alkaline gabbro-peralkaline syenite association. Lithos 19, 65–81.CrossRefGoogle Scholar
Czamanske, G.K., Wones, D.R., and Eichelberger, J.C. (1977) Mineralogy and petrology of the intrusive complex of the Pliny Range, New Hampshire. Am. J. Sci. 277, 1073–123.CrossRefGoogle Scholar
Eby, G.N. (1985) Age relations, chemistry, and petrogenesis of mafic alkaline dikes from the Monteregian Hills and Younger White Mountain Igneous Province. Can. J. Earth Sci. 22, 110-31.CrossRefGoogle Scholar
Ellis, D.J. (1976) High-pressure cognate inclusions in the Newer Volcanics of Victoria. Contrib. Mineral. Petrol. 58, 149-80.CrossRefGoogle Scholar
Ernst, W.G. (1962) Synthesis, stability relations and occurrence of riebeckite-arfvedsonite solid solutions. J. Geol. 70, 689–736.CrossRefGoogle Scholar
Ferguson, A.K. (1978) The crystallization of pyroxenes and amphiboles in some alkaline rocks and the presence of a pyroxene compositional gap. Contrib. Mineral. Petrol. 67, 11–15.CrossRefGoogle Scholar
Francis, D.M. (1976a) Amphibole pyroxenite xenoliths: cumulate or replacement phenomena from the upper mantle, Nunivak Island, Alaska. Ibid, 58, 5161.Google Scholar
Francis, D.M. (1976b) The origin of amphibole in lherzolite xenoliths from Nunivak Island, Alaska. J. Petrol. 17, 357-37.CrossRefGoogle Scholar
Frisch, T. (1970) Chemical variations among the amphiboles of Shefford Mountain, a Monteregian intrusion in southern Quebec. Can. Mineral. 10, 553–70.Google Scholar
Grlinas, L. (1972) The geology of Mount Royal (R. Darling, ed.) 24th International Geol. Congress, Montreal, Excursion B-12, 43 pp.Google Scholar
Giret, A., Bonin, B., and Lrger, J.-M. (1980) Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Can. Mineral. 18, 481–95.Google Scholar
Gold, D.P., Bell, K., Eby, G.N., and Vallre, M. (1986) Carbonatites, diatremes and ultra-alkaline rocks in the Oka area, Quebec. GAC/MAC/CGU Guidebook no. 21, 51 pp.Google Scholar
Grapes, R., Yagi, K., and Okumura, K. (1979) Aenigmatite, sodic pyroxene, arfvedsonite and associated minerals in syenites from Morotu, Sakhalin. Contrib. Mineral. Petrol. 69, 97103.CrossRefGoogle Scholar
Greenwood, R.C. (1983) Petrogenesis of the gabbroic suite, Mr. St. Hilaire, Quebec. M.Sc. Thesis, Univ. Western Ontario, London, Ontario, 193 pp.Google Scholar
Gunn, B.M. (1972) The fractionation effect of kaersutite in basaltic magmas. Can. Mineral. 11, 840–50.Google Scholar
Hermes, O.D., Rao, J.M., Dickenson, M.P., and Pierce, T.A. (1984) A transitional alkalic-dolerite dike suite of Mesozoic age in Southeastern New England. Contrib. Mineral. Petrol. 86, 386–97.CrossRefGoogle Scholar
Hodgson, C.J. (1969) Monteregian dike rocks. Ph.D. Thesis, McGill University, Montreal, 168 pp.Google Scholar
Holloway, J.R., and Burnham, C.W. (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J. Petrol. 13, 129.CrossRefGoogle Scholar
Holloway, J.R., and Burnham, C.W. and Ford, C.E. (1975) Fluid-absent melting of the fluor-hydroxy amphibole pargasite to 35 kilobars. Earth Planet Sci. Lett. 25, 44–8.CrossRefGoogle Scholar
Jones, A.P. (1984) Mafic silicates from the nepheline syenites of the Motzfeldt Centre, South Greenland. Mineral. Mag. 48, 112.CrossRefGoogle Scholar
Knutson, J., and Green, T.H. (1975) Experimental duplication of a high-pressure megacryst/cumulate assemblage in a near-saturated hawaiite. Contrib. Mineral. Petrol. 52, 121–32.CrossRefGoogle Scholar
Laird, J., and Albee, A.L. (1981) High-pressure metamorphism in mafic schist from northern Vermont. Am. J. Sci. 281, 97126.CrossRefGoogle Scholar
Larsen, L.-M. (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilimaussaq intrusion, South Greenland. J. Petrol. 17, 258–90.CrossRefGoogle Scholar
Leavy, B.D., and Hermes, O.D. (1979) Mantle xenoliths from south-eastern New England. Proc. 2nd Int. Kimberlite Conf. 37481.Google Scholar
Loiselle, M.C. (1978) Geochemistry and petrogenesis of the Belknap Mountains complex and Pliny range, White Mountain series, New Hampshire. Ph.D. Thesis, M.I.T., Cambridge, Mass. 302 pp.Google Scholar
McHone, J.G. (1978) Distribution, orientations, and ages of mafic dikes in central New England. Bull. Geol. Soc. Am. 89, 1645–55.2.0.CO;2>CrossRefGoogle Scholar
McHone, J.G. and Butler, J.R. (1984) Mesozoic igneous provinces of New England and the opening of the North Atlantic Ocean. Ibid. 95, 757–65.Google Scholar
McHone, J.G. and Corneille, E.S. (1980) Alkalic dikes of the Lake Champlain Valley. Vermont Geol. 1, 16–21.Google Scholar
McHone, J.G. and Trygstad, J.C. (1982) Mesozoic mafic dikes of southern Maine. Maine Geol. Bull. , 2 16–32.Google Scholar
Marchand, M. (1970) Uttramafic nodules from lie Bizard, Québec. M.Sc. Thesis, McGill University, Montreal. 73 pp.Google Scholar
Mitchell, R.H., and Platt, R.G. (1978) Mineralogy and petrology of nepheline syenites from the Coldwell alkaline complex, Ontario, Canada. J. Petrol. 19, 627–52.CrossRefGoogle Scholar
Miyashiro, A. (1978) Nature of alkalic volcanic rock series. Contrib. Mineral. Petrol. 66, 911-04.CrossRefGoogle Scholar
Nash, W.P., and Wilkinson, J.F. G. (1970) Shonkin Sag Laccolith, Montana. I. Mafic minerals and estimates of temperature, pressure, oxygen fugacity and silica activity. Ibid., 25 241–69.Google Scholar
Neumann, E.-R. (1976) Two refinements for the calculation of structural formulae for pyroxenes and amphiboles. Norsk Geol. Tidsskr. 56, 16.Google Scholar
Nielsen, T.F. D. (1979) The occurrence and formation of Ti-aegirines in peralkaline syenites: An example from the Tertiary ultramafic alkalic Gardiner complex, East Greenland. Contrib. Mineral. Petrol. 69, 235–244.CrossRefGoogle Scholar
Pajari, G.E. Jr. (1967) The mineralogy and petrochemistry of Mount Johnson. Ph.D. Thesis, Cambridge University, 208 pp.Google Scholar
Philpotts, A.R. (1974) The Monteregian province. In (Sorensen, H., ed.), The Alkaline Rocks. J. Wiley & Sons, London, 293–310.Google Scholar
Philpotts, A.R. and Hodgson, C.J. (1968) Role of liquid immiscibility in alkaline rock genesis. Int. Geol. Congr. Prague 2, 175–88.Google Scholar
Presnall, D.C., Dixon, S.A., Dixon, J.R., O'Donnell, T.H., Brenner, N.L., Schrock, R.L., and Dyars, D.W. (1978) Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar; their bearing on the generation and crystallization of basaltic magma. Contrib. Mineral. Petrol. 66, 203–20.CrossRefGoogle Scholar
Rock, N.M. S. (1977) The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth Sci. Rev. 13, 123–169.CrossRefGoogle Scholar
Rock, N.M. S. (1986) The nature and origin of ultramafic lamprophyres: Alnrites and allied rocks. J. Petrol. 27,155–96.CrossRefGoogle Scholar
Rock, N.M. S. and Leake, B.E. (1984) The International Mineralogical Association amphibole nomenclature scheme: computerization and its consequences. Mineral. Mag. 48,211–27.CrossRefGoogle Scholar
Stephenson, D., and Upton, B.G. J. (1982) Ferromagnesian silicates in a differentiated alkaline complex: Kfmgnétt Fjeld, South Greenland. Ibid. 46, 283–300.Google Scholar
Strong, D.F. and Taylor, R.P. (1984) Magmaticsubsolidus and oxidation trends in composition of amphiboles from silica-saturated peralkaline igneous rocks. Tschermaks Mineral. Petr. Mitt. 32, 211–22.CrossRefGoogle Scholar
Valiquette, G., and Pouliot, G. (1977) Geology of Mounts Brome and Shefford. Ministate des Richesses Naturelles du Quebec ES-28, 99 pp.Google Scholar
Vinx, R., and Jung, D. (1977) Pargasitickaersutitic amphibole from a basanitic diatreme at the Rosenberg, north of Kassel (North Germany). Contrib. Mineral. Petrol. 65, 135–42.CrossRefGoogle Scholar
Weigand, P.W., and Ragland, P.C. (1970) Geochemistry of Mesozoic dolerite dikes from eastern North America. Ibid. 29, 195–214.Google Scholar
Woussen, G. (1974) Pétrologie de complexe igné de Brome. Ph.D. thesis, Universit6 de Montrral, Montrral, 380 pp.Google Scholar
Yoder, H.S. Jr. (1976) Generation of basaltic magmas. National Acad. Sci., Wash., DC. 265 pp.Google Scholar
Yoder, H.S. Jr. and Tilley, C.E. (1962) Origin of basalt magma: an experimental study of synthetic rock systems. J. Petrol. 3, 342–532.CrossRefGoogle Scholar