Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T20:11:31.416Z Has data issue: false hasContentIssue false

A cobalt-rich spinel inclusion in a sapphire from Bo Ploi, Thailand

Published online by Cambridge University Press:  05 July 2018

Jingfeng Guo
Affiliation:
School of Earth Sciences, Macquarie University, NSW 2109, Australia
W. L. Griffin
Affiliation:
CSIRO Division of Exploration Geoscience, P.O. Box 136, North Ryde, NSW 2113, Australia
S. Y. O'Reilly
Affiliation:
School of Earth Sciences, Macquarie University, NSW 2109, Australia

Abstract

Cobalt-rich spinel is found as a ∼200 µm inclusion, together with a glassy phase, in a gem-quality blue sapphire from Bo Ploi, Thailand. This is the first reported natural occurrence of such a spinel. Its composition is directly analogous with that of cochromite, a previously reported rare cobalt-rich chromite. The compositional ranges for the cobalt-rich spinel, obtained using electron microprobe and proton microprobe (methods described below), are Al2O3 48.18–61.27 %, CoO 19.7–22.84 %, Cr2O3 0–12.28 %, FeO 8.64–9.67 %, MgO 6.04–6.89, TiO2 0.49–0.73 %, Ni 2251–2532 p.p.m., Zn 335–371 p.p.m., Mn < 177–849 p.p.m., Ga 113–153 p.p.m., Nb 24–1252 p.p.m., Zr <4–167 p.p.m., Sn 22–428 p.p.m., As <4–56 p.p.m., Sr <4–59 p.p.m., Ag 13–64 p.p.m. Transition elements decrease in abundance from core to rim of the spinel while the other elements increase. Crystal chemical considerations suggest that a vacancy-creating substitution mechanism may be operative in the cobalt-rich spinel despite the small scale, i.e. 3Co2+ = 2Al3+ + [4]□. The glassy phase coexisting with the spinel is likely to be the product of heating by the host basaltic magma. The mode of occurrence of the cobalt-rich spinel prevents further physical investigation. This unusual spinel is considered to be the result of a complex magma mixing process in the lower crust.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barr, S. M. and MacDonald, A. S. (1978) Geochem-istry and petrogenesis of late Cenozoic alkaline basalts of Thailand. Geol. Soc. Malaysia Bull., 10, 25–52.CrossRefGoogle Scholar
Barr, S. M. and MacDonald, A. S. (1979) Palaeo-magnetism, age, and geochemistry of the Denchai basalt, northern Thailand. Earth Planet. Sci. Lett., 46, 113–24.CrossRefGoogle Scholar
Barr, S. M. and MacDonald, A. S. (1981) Geochem-istry and geochronology of late Cenozoic basalts of southeast Asia: summary. Geol. Soc. Amer. Bull, 92, 508–12.2.0.CO;2>CrossRefGoogle Scholar
Bunopas, S. and Bunjitadulya, S. (1975) Geology of Amphoe Bo Ploi, North Kanchanaburi with special notes on the ‘Kanchanaburi Series'. J. Geol. Soc. Thai., 1, 51–67.Google Scholar
DeWaal, S. A. (1978) Nickel minerals from Barber-ton, South Africa. VIII. The spinels cochromite and nichromite, and their significance to the origin of the Bon Accord nickel deposit. Bull. Bur. Rech. Geol. Minieres, Sec. II, Geol. Giles Mineraux, no. 3, 225-23 (not seen; extracted from Amer. Mineral, 65, p. 811, 1980).Google Scholar
Griffin, W. L., Jaques, A. L., Sie, S. H., Ryan, C. G., Cousens, D. R. and Suter, G. F. (1988) Condi-tions of diamond growth: a proton microprobe study of inclusions in West Australian diamonds. Contrib. Mineral. Petrol., 99, 143–58.CrossRefGoogle Scholar
Gubelin, E. J. and Koivula, J. I. (1986) Photoatlas of Inclusions in Gemstones. ABC Edition, Zurich.Google Scholar
Gunawardene, M. and Chawla, S. S. (1984) Sap-phires from Kanchanaburi Province, Thailand. J. Gemmol, 19, 228–39.CrossRefGoogle Scholar
Guo, J. F., O'Reilly, S. Y. and Griffin, W. L. (1992a) Origin of sapphire in eastern Australian basalts: Inferred from inclusion studies. Abstracts of the 11th Australian Geological Convention, Ballarat, Victoria, Geological Society of Australia Abstracts No. 32, 219-20.Google Scholar
Guo, J. F., Wang, F. Q. and Yakoumelos, G. (19926) Sapphires from Changle in Shandong Province, China. Gems Gemol, 28, 255–60.CrossRefGoogle Scholar
Harder, von H. (1986) Natural cobalt-blue spinels from Ratnapura, Sri Lanka. Neues Jahrb. Mineral, Mh., 3, 97–100.Google Scholar
Jacob, K. T., Iyengar, G. N. K. and Kim, W. K. (1986) Spinel-corundum phase equilibria in the systems Mn-Cr-Al-O and Co-Cr-Al-0 at 1373 K. J. Amer, Ceram. Soc, 69, 487–92.CrossRefGoogle Scholar
Ryan, C. G., Cousens, D. R., Sie, S. H., Griffin, W. L., Suter, G. F. and Clayton, E. (1990) Quanti-tative PIXE microanalysis of geological material using the CSIRO proton microprobe. Nucl. Instr. Meth., B47, 55–71.CrossRefGoogle Scholar
Schmocker, U. and Waldner, F. (1976) The inversion parameter with respect to the space group of MgAl2O4 spinels. J. Phys. C: Solid State Phys., 9, L235-7.Google Scholar
Shigley, J. E. and Stockton, C. M. (1984) ‘Cobalt-blue’ gem spinels. Gems Gemol., 20, 34–41.CrossRefGoogle Scholar
Toriumi, K., Ozima, M., Akaogi, M. and Saito, Y. (1978) Electron-density distribution in crystals of CoAl2O4. Ada Crystallogr., B34, 1093–6.CrossRefGoogle Scholar
Vichit, P., Vudhichativanich, S. and Hansawek, R. (1978) The distribution and some characteristics of corundum-bearing basalts in Thailand. J. Geol. Soc. Thai., 3, M4.l-M4.38.Google Scholar
Wood, B. J., Kirkpatrick, R. J. and Montez, B. (1986) Order-disorder phenomena in MgAl2O4spinel. Amer. Mineral, 71, 999–1006.Google Scholar