Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:54:12.476Z Has data issue: false hasContentIssue false

Cation distribution in natural Zn-aluminate spinels

Published online by Cambridge University Press:  05 July 2018

S. Lucchesi
Affiliation:
Dipartimento di Scienze della Terra, Uuiversità di Roma “La Sapienza”, P. le A. Moro 5, 00186 Roma, Italy
A. Della Giusta
Affiliation:
Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35122 Padova, Italy
U. Russo
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica e Analitica, Università di Padova, Via Loredan 4, 35131 Padova, Italy

Abstract

The intracrystalline cation distributions in fourteen natural Zn-aluminate spinels were determined by means of X-ray single-crystal structural refinement, supported for some samples by Mössbauer spectroscopy.

Zinc substitutes for Mg and subordinately Fe2+ and its relevant changes in content, from 0.10 to 0.96 atoms per formula unit (apfu), are not related to variations of cell parameter. The latter is determined mainly by the substitution Fe3+ ⇌ Al. In agreement with data from synthetic samples, a small but definite amount of Zn (up to 0.06 apfu) is located in the octahedral M site. Fe2+, when present, shows a preference for tetrahedral coordination.

An improved value of the tetrahedral Zn(T)-O distance (1.960 Å) was obtained, integrating the set of interatomic distances used for the determination of cation distribution in spinels.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruckmann-Benke, P., Chatterjee, N.D. and Aksyuk, M. (1988) Thermodynamic properties of Zn(Al,Cr)2O4 spinels at high temperatures and pressures. Contrib. Mineral. Petrol., 98, 91–6.CrossRefGoogle Scholar
Carbonin, S., Russo, U. and Della Giusta, A. (1996) Cation distribution in some natural spinels from X-ray diffract ion and Mössbauer spectroscopy. Mineral. Mag., 60, 335–68.CrossRefGoogle Scholar
Carvalho, A.V. III and Sclar, C.B. (1988) Experimental determination of the ZnFe2O4–ZnAl2O4 miscibility gap with application to franklinite–gahnite exolution intergrowths from the Sterling Hill mine deposit, New Jersey. Econ. Geol., 83, 1447–52.CrossRefGoogle Scholar
Cooley, R.F. and Reed, J.S. (1972) Equilibrium cation distributions in NiAl2O4, CuAl2O4 and ZnAl2O4 . J. Amer. Ceram. Soc., 55, 395–8.CrossRefGoogle Scholar
Della Giusta, A., Princivalle, F. and Carbonin, S. (1986) Crystal chemistry of a suite of natural Cr-bearing spinels with 0.15<Cr<1.07. Neues Jahrb. Mineral. Abh., 155, 319–30.Google Scholar
Della Giusta, A., Carbonin, S. and Ottonello, G. (1996) Temperature-dependent disorder in a natural Mg-Al-Fe2+-Fe3+-spinel. Mineral. Mag., 60, 603–16.CrossRefGoogle Scholar
Finger, L.W., Hazen, R.M. and Hofmeister, A.M. (1986) High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels. Phys. Chem. Minerals, 13, 215–20.CrossRefGoogle Scholar
Fischer, P. (1967) Neutronenbeugungsuntersuchungen der Strukturen von MgAl2O4- und ZnAl2O4- Spinellen, in Abhängigkeit von der Vorgeschichte. Zeits. Krist., 124, 275302.CrossRefGoogle Scholar
Grimes, N.W., Thompson, P. and Kay, H.F. (1983) New symmetry and structure for spinel. Proc. Royal Soc. London, A386, 333–45.Google Scholar
Hafner, S. (1960) Metalloxyde mit Spinellstruktur. Schweiz. Mineral. Petrogr. Mitt., 40, 208–40.Google Scholar
Hill, R.J., Craig, J.R. and Gibbs, G.V. (1979) Systematics of the spinel structure type. Phys. Chem. Minerals, 4, 317–39.CrossRefGoogle Scholar
Larson, F.K. (1970) Crystallographic Computing. Ed. Ahmed, F.R., Munksgaard, Copenhagen.Google Scholar
Larsson, L. (1995) Temperature dependent cation distribution in a natural Mg0.4Fe0.6Al2O4 spinel. Neues Jahrb. Mineral., Mh., 173–84.Google Scholar
Lucchesi, S. and Della Giusta, A. (1997) Crystal chemistry of an highly disordered Mg-Al natural spinel. Mineral. Petrol., in press.CrossRefGoogle Scholar
Lucchesi, S., Russo, U. and Della Giusta, A. (1997) Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. Eur. J. Mineral., 9, 3142.CrossRefGoogle Scholar
Marshall, C.P. and Dollase, W.A. (1984) Cation arrangement in iron-zinc-chromium spinel oxides. Amer. Mineral., 69, 928–36.Google Scholar
Navrotsky, A. (1986) Cation-distribution energetics and heats of mixing in MgFe2O4—MgAl2O4—ZnAl2O4 and NiAl2O4—ZnAl2O4 spinels: Study by hightemperature calorimetry. Amer. Mineral. , 71, 1160–9.Google Scholar
Nell, J., Wood, B.J. and Mason, T.O. (1989) Hightemperature cation distributions in Fe3O4—MgAl2O4— MgFe2O4—FeAl2O4 spinels from thermopower and conductivity measurements. Amer. Mineral., 74, 339–51.Google Scholar
O'Neill, H.St.C. (1992) Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur. J. Mineral., 4, 571–80.CrossRefGoogle Scholar
O'Neill, H.St.C. and Dollase, W.A. (1994) Crystal Structures and Cation Distributions in Simple Spinels from Powder XRD Structural Refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the Temperature Dependence of the Cation Distribution in ZnAl2O4 . Phys. Chem. Minerals, 20, 541–55.CrossRefGoogle Scholar
O'Neill, H.St.C. and Navrotsky, A. (1983) Simple spinel: crystallographic parameters, cation radii, lattice energies and cation distribution. Amer. Mineral., 68, 181–94.Google Scholar
O'Neill, H.St.C., Annersten, H. and Virgo, D. (1992) The temperature dependence of the cation distribution in magnesioferrite (MgFe2O4) from powder XRD structural refinements and Mössbauer spectroscopy. Amer. Mineral., 77, 725–40.Google Scholar
Princivalle, F., Della Giusta, A. and Carbonin, S. (1989) Comparative crystal chemistry of spinels from some suites of ultramafic rocks. Mineral. Petrol., 40, 117–26.CrossRefGoogle Scholar
Roelofsen, J.N., Peterson, R.C. and Raudsepp, M. (1992) Structural variation in a nickel aluminate spinel (NiAl2O4). Amer. Mineral., 77, 522–8.Google Scholar
Saalfeld, H. (1964) Strukturdaten von Gahnit, ZnAl2O4 . Zeits. Krist., 120, 476–8.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystall., A32, 751–67.CrossRefGoogle Scholar
Spry, P.G. and Scott, S.D. (1986) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Econ. Geol., 81, 1446–63.CrossRefGoogle Scholar
Tokonami, M. and Horiuchi, H. (1980) On the space group of spinel MgAl2O4 . Acta Cryst., A36, 122–6.CrossRefGoogle Scholar
Waerenborgh, J.C., Annersten, H., Ericsson, T., Figueiredo, M.O. and Cabral, J.M.P. (1990) A Mössbauer study of natural gahnite spinels showing strongly temperature-dependent quadrupole splitting distributions. Eur. J. Mineral., 2, 267–71.CrossRefGoogle Scholar
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, L.C.J. (1994 a) Powder XRD Structure Refinements and 57Fe Mössbauer Effect Study of Synthetic Zn1-xFexAl2O4 (0<x<1) Spinels Annealed at Different Temperatures. Phys. Chem. Minerals, 21, 460–8.CrossRefGoogle Scholar
Waerenborgh, J.C., Figueiredo, M.O., Cabral, J.M.P. and Pereira, L.C.J. (1994 b) Temperature and Composition Dependence of the Cation Distribution in Synthetic ZnFeyAl2-yO4 (0 ⩽ y ⩽ 1) Spinels. J. Solid State Chem., 111, 300–9.CrossRefGoogle Scholar
Wood, B.J. and Virgo, D. (1989) Upper mantle oxidation state: Ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacity. Geochim. Cosmochim. Acta, 53, 1277–91.CrossRefGoogle Scholar
Wood, B.J., Kirkpatrick, R.J. and Montez, B. (1986) Order-disorder phenomena in MgAl2O4 spinel. Amer. Mineral., 71, 9991006.Google Scholar
Wu, C.C. and Mason, T.O. (1981) Thermopower measurement of cation distribution in magnetite. J. Amer. Ceram. Soc., 64, 520–2.CrossRefGoogle Scholar