Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T08:10:50.680Z Has data issue: false hasContentIssue false

Cathodoluminescence microcharacterization of point defects in α-quartz

Published online by Cambridge University Press:  05 July 2018

M. A. Stevens-Kalceff*
Affiliation:
School of Physics and Electron Microscope Unit, University of New South Wales, Sydney NSW 2052, Australia
*

Abstract

Cathodoluminescence (CL) spectroscopy in an SEM has been used to investigate the point defect structure of clear natural α-quartz at 295 K. Cathodoluminescence processes and experimental factors that influence the CL spectra from α-quartz are investigated. Electron irradiation may induce changes in the average local crystal micro structure of quartz, locally transforming it to a less dense, amorphized state. The observed CL emissions are identified with a range of native and impurity defect centres including: interstitial molecular O at 0.968 eV; a charge-compensated substitutional Fe3+ impurity centre at —1.65 eV; a non-bridging oxygen hole centre (NBOHC) at 1.9 eV; an NBOHC with OH~ precursor at 1.95 eV; an NBOHC with a non-bridging impurity (e.g. Li+, Na+ or K+) precursor at — 1.9 eV; a radiative recombination of the self-trapped exciton (STE) associated with an E' centre in electron-irradiation-amorphized quartz at 2.3 eV; a radiative recombination of the STE associated with the E1' centre in α-quartz at 2.7 eV; a charge-compensated-substitutional Al3+ impurity centre at 3.3 eV; and a neutral relaxed O vacancy at 4.3 eV. In addition, unresolved contributions from O-deficient defects in electron-irradiation-amorphized SiO2 are likely at —2.7 and 4.3 eV.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, P.J., Halliburton, L.E., Kohnke, E.E. and Bossol, R.B. (1983) X-ray induced luminescence in crystalline SiO2 . Journal of Applied Physics, 54, 53695375.CrossRefGoogle Scholar
Boggs, S., Jr., Kwon, Y.-I., Goles, G.G., Rusk, B.G., Krinsley, D. and Seyedolali, A. (2002) Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. Journal of Sedimentary Research, 72, 408415.CrossRefGoogle Scholar
Botis, S., Nokhrin, S.M., Pan, Y., Xu, Y., Bonli, T. and Sopuck, V. (2005) Natural radiation-induced damage in quartz. I. Correlations between cathodolumines- cence colors and paramagnetic defects. The Canadian Mineralogist, 43, 15651580.CrossRefGoogle Scholar
Bruhn, F., Bruckenschen, P., Meijer, J., Stephan, A., Richter, D.K. and Veizer, J. (1996) Cathodo- luminescence investigations and trace-element analysis of quartz by micro-pixe - implications for diagenetic and provenance studies of sandstones. The Canadian Mineralogist, 34, 12231232.Google Scholar
Cazaux, J. (1986) Some considerations on the electric field induced in insulators by electron bombardment. Journal of Applied Physics, 59, 14181430.CrossRefGoogle Scholar
Demars, C., Pagel, M., Deloule, E. and Blanc, P. (1996) Cathodoluminescence of quartz from sandstones - interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authigenic quartz. American Mineralogist, 81, 891901.CrossRefGoogle Scholar
Drouin, D. (2006) CASINO a powerful simulation tool for cathodoluminescence applications. Microscopy and Microanalysis, 12, 15121513.CrossRefGoogle Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. and Gauvin, R. (2007a) CASINO V2.42 www.gel.usherbrooke.ca/casino.Google Scholar
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. and Gauvin, R. (2007b) CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29, 92101.CrossRefGoogle Scholar
Edwards, A.H. and Fowler, W.B. (1982) Theory of peroxy-radical defect in a-SiO2 . Physical Review B, 26, 66496660.CrossRefGoogle Scholar
Egerton, R.F., Li, P. and Malac, M. (2004) Radiation damage in the TEM and SEM. Micron, 35, 399409.CrossRefGoogle ScholarPubMed
Filippov, M.N. (1993) Evaluation of electron probe thermal action in scanning electron microscopy and electron probe microanalysis. Izvestiya Akademii Nauk Seriya Fizicheskaya, 57, 165171 Google Scholar
Fisher, A.J., Hayes, W. and Stoneham, A.M. (1990) Structure of the self-trapped exciton in quartz. Physical Review Letters, 64, 26672670.CrossRefGoogle ScholarPubMed
Friebele, E.J., Griscom, D.L., Stapelbroek, M. and Weeks, R.A. (1979) Fundamental defect centers in glass: the peroxy radical in irradiated, high-purity, fused silica. Physical Review Letters, 42, 13461349.CrossRefGoogle Scholar
Galloway, S.A., Miller, P., Thomas, P. and Harmon, R. (2003) Advances in cathodoluminescence characterisation of compound semiconductors with spectrum imaging. Physica Status Solidi C, 0, 10231032. Gatan. (2008) http://www.gatan.com/sem/monocl3.php.Google Scholar
Goldberg, M., Barfels, T. and Fitting, H.J. (1998) Cathodoluminescence depth analysis in SiO2-Si- systems. Fresenius Journal of Analytical Chemistry, 361, 560561.CrossRefGoogle Scholar
Goldstein, J.I., Newbury, D.E., Echlin, P., Lyman, C.E., Joy, D.C., Lifshin, E., Sawyer, L. and Michael, J.R. (2003) Scanning Electron Microscopy and X-ray Microanalysis. Springer, 586 pp.CrossRefGoogle Scholar
Gorton, N.T., Walker, G. and Burley, S.D. (1997) Experimental analysis of the composite blue cathodoluminescence emission in quartz. Journal of Luminescence, 72, 669671.CrossRefGoogle Scholar
Götze, J. (2000) Cathodoluminescence microscopy and spectroscopy in applied mineralogy. Freiberger Forschungshefte, C485, 128 pp.Google Scholar
Götze, J. and Kempe, U. (2008) A comparison of optical microscope- and scanning electron microscope based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineralogical Magazine, 72, 909—924.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Habermann, D. (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz — a review. Mineralogy and Petrology, 71, 225—250.Google Scholar
Götze, J., Plötze, M., Graupner, T., Hallbauer, D.K. and Bray, C.J. (2004) Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography. Geochimica et Cosmochimica Acta, 68, 3741—3759.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 13—21.CrossRefGoogle Scholar
Griscom, D.L. (1979) Point defects and radiation damage processes. In: a-Quartz. 33rd Annual Symposium on Frequency Control. 1979. Pp. 98 — 109.CrossRefGoogle Scholar
Griscom, D.L. (1985) Defect structure of glasses. Journal of Non-Crystalline Solids, 73 , 51—77.CrossRefGoogle Scholar
Griscom, D.L. (1991) Optical properties and structure of defects in silica glass. Journal of the Ceramics Society of Japan, 99, 923—942.Google Scholar
Griscom, D.L. (2000) The nature of point defects in amorphous silicon dioxide. Pp. 117—159 in: Defects in SiO2 and Related Dielectrics: Science and Technology, Kluwer, Dordrecht, The Netherlands.Google Scholar
Haddad, S.C., Worden, R.H., Prior, D.J. and Smalley, P.C. (2006) Quartz cement in the Fontainebleau Sandstone, Paris Basin, France: crystallography and implications for mechanisms of cement growth. Journal ofSedimentary Research, 76, 244—256.Google Scholar
Halliburton, L.E., Koumvakalis, N., Markes, M.E. and Martin, J.J. (1981) Radiation effects in crystalline SiO2: The role of aluminum. Journal of Applied Physics, 52, 3565 3574.CrossRefGoogle Scholar
Hamann, D.R. (1998) Diffusion of atomic oxygen in SiO2 . Physical Review Letters, 81, 3447—3450.CrossRefGoogle Scholar
Hamilton, T.D.S., Munro, I.H. and Walker, G. (1978) Luminescence instrumentation. Pp. 149238 in: Luminescence Spectroscopy (M.D. Lumb, editor). Academic Press, London.Google Scholar
Henderson, B. and Imbusch, G.F. (1989) Optical Spectroscopy of Inorganic Solids. Clarendon, Oxford, UK, 645 pp.Google Scholar
Hobbs, L.W. and Pascucci, M.R. (1980) Radiolysis and defect structure in electron-irradiated a-quartz. Journal de Physique, 7, C6-237—C6-242.Google Scholar
Hosono, H., Kawazoe, H. and Matsunami, N. (1998) Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation. Physical Review Letters, 80, 317—320.CrossRefGoogle Scholar
Ihrig, H., Hengst, J.H. and Klerk, M. (1981) Conductivity-dependent cathodoluminescence in BaTiO3, SrTiO3 and TiO2. Zeitschrift fur Physik B Condensed Matter, 40, 301—306.CrossRefGoogle Scholar
Itoh, C., Tanimura, K. and Itoh, N. (1988) Optical studies of self trapped excitons in SiO2 . Journal of Physics C, 21, 4693—4702.Google Scholar
Jacamon, F. and Larsen, R.B. (2009) Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107, 281—291.CrossRefGoogle Scholar
Jani, M., Halliburton, L. and Kohnke, E. (1983a) Point defects in crystalline SiO2: thermally stimulated luminescence above room temperature. Journal of Applied Physics, 54, 6321—6328.CrossRefGoogle Scholar
Jani, M.G., Bossoli, R.B. and Halliburton, L.E. (1983b) Further characterization of the E'1 center in crystalline SiO2 . Physical Review B, 27, 2285—2293.CrossRefGoogle Scholar
Jbara, O., Cazaux, J. and Trebbia, P. (1995) Sodium diffusion in glasses during electron irradiation. Journal of Applied Physics, 78, 868—875.CrossRefGoogle Scholar
Kats, A. (1962) Hydrogen in alpha-quartz (1). Philips Research Reports, 17, 133195.Google Scholar
Kempe, U., Götze, J., Dandar, S. and Habermann, D. (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai); indications from a combined CL-SEM study. Mineralogical Magazine, 63, 165177.CrossRefGoogle Scholar
Kibar, R., Garcia-Guinea, J., Cetin, A., Selvi, S., Karal, T. and Can, N. (2007) Luminescent, optical and color properties of natural rose quartz. Radiation Measurements, 42, 1610—1617.CrossRefGoogle Scholar
Luff, B. and Townsend, P. (1990) Cathodoluminescence of synthetic quartz. Journal of Physics, Condensed Matter, 2, 8089—8097.CrossRefGoogle Scholar
MacRae, C.M. and Wilson, N.C. (2008) Luminescence database I; minerals and materials. Microscopy and Microanalysis, 14, 184—204.CrossRefGoogle ScholarPubMed
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. and Otsuki, M. (2005) Hyperspectral mappingcombining cathodoluminescence and X-ray collection in an electron microprobe. Microscopy Research and Technique, 67, 271—277.CrossRefGoogle Scholar
Marshall, D.J. (1988) Cathodoluminescence of Geological Materials. Unwin Hyman (Boston), USA, 146 pp.Google Scholar
Maschmeyer, D. and Lehmann, G. (1983) New hole centers in natural quartz. Physics and Chemistry of Minerals, 10, 84—88.CrossRefGoogle Scholar
Mombourquette, M.J., Minge, J., Hantehzadeh, M.R., Weil, J.A. and Halliburton, L.E. (1989) Electron paramagnetic resonance study of Fe3+ in a-quartz: hydrogen-compensated center. Physical Review B, 39, 4004—4008.CrossRefGoogle Scholar
Müller, A., Lennox, P. and Trzebski, R. (2002) Cathodoluminescence and micro-structural evidence for crystallization and deformation processes of granites in the Eastern Lachlan Fold Belt (SE Australia). Contributions to Mineralogy and Petrology, 143, 510—524.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Kerkhof, A.M., Kronz, A. and Simon, K. (2003) Trace elements in quartz — a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodo- luminescence study. European Journal of Mineralogy, 15, 747—763.Google Scholar
Nishikawa, H., Tohmon, R., Ohki, Y., Nagasawa, K. and Hama, Y. (1989) Defects and optical absorption bands induced by surplus oxygen in high-purity synthetic silica. Journal of Applied Physics, 65, 4672—4678.CrossRefGoogle Scholar
Norman, C.E. (2001) Investigating inter-well dopant concentration variations in doped MQWs with 20 nm spatial resolution. Institute of Physics Conference Series, 169, 557—560.Google Scholar
Pacchioni, G. and Ierano, G. (1997) Computed optical absorption and photoluminescence spectra of neutral oxygen vacancies in a-quartz. Physical Review Letters, 79, 753—756.CrossRefGoogle Scholar
Pacchioni, G. and Ierano, G. (1998) Ab Initio theory of optical transitions of point defects in SiO2 . Physical Review B, 57, 818—832.Google Scholar
Pacchioni, G., Skuja, L. and Griscom, D.L. (2000) Defects in SiO2 and Related Dielectrics: Science and Technology. NATO Science Series. Kluwer Academic, Boston, USA, 624 pp.CrossRefGoogle Scholar
Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D. (editors) (2000) Cathodoluminescence in Geoscience. Springer-Verlag, Berlin, Heidelberg, New York, 514 pp.CrossRefGoogle Scholar
Palma, A., Lopez-Villanueva, J.A. and Carceller, J.E. (1996) Electric field dependence of the electron capture cross section of neutral traps in SiO2 . Journal of the Electrochemical Society, 143, 2687—2690.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J. and Pankrath, R. (1992) Microdistribution of Al, Li, and Na in alpha quartz: Possible causes and correlation with short-lived cathodoluminescence. American Mineralogist, 77, 534—544.Google Scholar
Pfeffer, R.L. (1985) Damage center formation in SiO2 thin films by fast electron irradiation. Journal of Applied Physics, 57, 5176—5180.CrossRefGoogle Scholar
Pott, G.T. and McNicol, B.D. (1971) Spectroscopic study of the coordination and valence of Fe and Mn ions in and on the surface of aluminas and silicas. Discussions of the Faraday Society, 52, 121131.CrossRefGoogle Scholar
Rakov, L. (2006) Mechanisms of isomorphic substitution in quartz. Geochemistry International, 44, 1004—1014.CrossRefGoogle Scholar
Ramseyer, K. and Mullis, J. (1990) Factors influencing short-lived blue cathodoluminescence of alphaquartz. American Mineralogist, 75, 791—800.Google Scholar
Ramseyer, K., Baumann, J., Matter, A. and Mullis, J. (1988) Cathodoluminescence colours of a-quartz. Mineralogical Magazine, 52, 669—677.CrossRefGoogle Scholar
Remond, G., Cesbron, F., Chapoulie, R., Ohnenstetter, D., Rouques-Carmes, C. and Schvoerer, M. (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: present status in experimentation and interpretation. Scanning Microscopy, 6, 23—68.Google Scholar
Richter, D.K., Gotte, T., Götze, J. and Neuser, R.D. (2003) Progress in application of cathodolumines- cence (CL) in sedimentary petrology. Mineralogy and Petrology, 79, 127—166.CrossRefGoogle Scholar
Rusk, B.G., Reed, M.H., Dilles, J.H. and Kent, A.J. (2006) Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. American Mineralogist, 91, 1300—1312.CrossRefGoogle Scholar
Sakurai, Y. and Nagasawa, K. (2000) Correlation between 1.5 eV photoluminescence-band and 3.8 eV absorption band in silica glass. Journal of Non-Crystalline Solids, 261, 21—27.CrossRefGoogle Scholar
Skuja, L. (1994) Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen- deficient glass. Journal of Non-Crystalline Solids, 167, 229—238.CrossRefGoogle Scholar
Skuja, L. (1998) The nature of optically active oxygen deficiency related centers in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 239, 16—48.CrossRefGoogle Scholar
Skuja, L. (2000) Optical Properties of Defects in Silica. Pp. 387—392 in: Defects in SiO2 and Related Dielectrics: Science and Technology (G. Pacchioni, L. Skuja and D.L. Griscom, editors). Kluwer, Dordrecht, The Netherlands.Google Scholar
Skuja, L. and Naber, A. (1997) Laser-induced luminescence in glassy SiO2 and neutron-irradiated alpha- quartz: three types of non-bridging oxygen hole centers. Materials Science Forum, 239, 25—28.Google Scholar
Skuja, L., Guttler, B., Schiel, D. and Silin, A.R. (1998) Infrared photoluminescence of preexisting or irradiation-induced interstitial oxygen molecules in glassy SiO2 and a-quartz. Physical Review B, 58, 14296—14304.CrossRefGoogle Scholar
Skuja, L., Hirano, M., Hosono, H. and Kajihara, K. (2005) Defects in oxide glasses. Physica Status Solidi C, 2, 15—24.Google Scholar
Sprunt, E.S. (1981) Causes of quartz cathodolumines- cence colors. Scanning Electron Microscopy, 1, 525—535.Google Scholar
Stevens-Kalceff, M.A. (1998) Cathodoluminescence microcharacterization of the defect structure of irradiated hydrated and anhydrous fused silicon dioxide. Physical Review B, 57, 5674—5683.Google Scholar
Stevens-Kalceff, M.A. (2000) Electron irradiation induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs. Physical Review Letters, 84, 3137—3140.CrossRefGoogle ScholarPubMed
Stevens-Kalceff, M.A. (2001) Micromodification of silicon dioxide in a variable pressure/environmental scanning electron microscope. Applied Physics Letters, 79, 3050—3052.CrossRefGoogle Scholar
Stevens-Kalceff, M.A. and Phillips, M. (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Physical Review B, 52, 3122—3134.Google Scholar
Stevens-Kalceff, M.A., Phillips, M.R., Moon, A.R. and Smallwood, A. (1997) Cathodoluminescence microanalysis of natural hydrated amorphous SiO2; opal. Physics and Chemistry of Minerals, 24, 131138.CrossRefGoogle Scholar
Stevens-Kalceff, M.A., Phillips, M., Moon, A. and Kalceff, W. (2000) Cathodoluminescence microcharacterization of silicon dioxide polymorphs. Pp. 193—224 in: Cathodoluminescence in Geoscience (M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter, editors). Springer-Verlag, Berlin.Google Scholar
Stewart, J. and Gallaway, W. (1962) Diffraction anomalies in grating spectrophotometers. Applied Optics, 1, 421—429.CrossRefGoogle Scholar
Trukhin, A., Haut, C., Jacqueline, A.S. and Poumellec, B. (2005) E-beam induced damage in SiO2-Ge crystalline a-quartz, comparison with silica glass. Journal of Non-Crystalline Solids, 351, 2481—2484.CrossRefGoogle Scholar
Tsai, T.E. and Griscom, D.L. (1991) Experimental evidence for excitonic mechanism of defect generation in high-purity silica. Physical Review Letters, 67, 2517—2520.CrossRefGoogle ScholarPubMed
Walker, G. (2000) Physical parameters for the identification of luminescence centers in minerals. Pp. 23—40 in: Cathodoluminescence in Geoscience (M. Pagel, V. Barbin, P. Blanc and D. Ohnenstetter, editors). Springer-Verlag, Berlin.Google Scholar
Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J. and Watson, E.B. (2007) Pre-eruption recharge of the Bishop magma system. Geology, 35, 235—238.CrossRefGoogle Scholar
Weil, J.A. (1984) A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Physics and Chemistry of Minerals, 10, 149—165.CrossRefGoogle Scholar
Weil, J.A. (1993) A review of EPR spectroscopy of the point defects in alpha-quartz. Pp. 131 — 144 in: The Physics and Chemistry of SiO2 and the Si-SiO2 Interface: 2 (C.R. Helms and B.E. Deal, editors). Plenum Press, New York.Google Scholar
Weil, J.A. (2000) A demi-century of magnet defects in alpha-quartz. Pp. 197—212 in: Defects in SiO2 and Related Dielectrics: Science and Technology (G. Pacchioni, L. Skuja and D.L. Griscom, editors). Kluwer, Dordrecht, The Netherlands.Google Scholar
Wright, A.C. (2000) Defect-free vitreous networks: The idealised structure of SiO2 and related glasses. Pp. 1 —36 in: Defects in SiO2 and Related Dielectrics: Science and Technology (G. Pacchioni, L. Skuja and D.L. Griscom, editors). Kluwer, Dordrecht, The Netherlands Google Scholar
Yacobi, B.G. and Holt, D.B. (1986) Cathodo-luminescence scanning electron microscopy of semiconductors. Journal of Applied Physics, 59, R1—R24.CrossRefGoogle Scholar
Yacobi, B.G. and Holt, D.B. (1 990) Cathodoluminescence Microscopy of Inorganic Solids. Plenum Press, New York, 292 pp.Google Scholar
Yang, X.H. and McKeever, S.W.S. (1990) The pre-dose effect in crystalline quartz. Journal of Physics D, 23, 237—244.CrossRefGoogle Scholar