Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T01:19:57.788Z Has data issue: false hasContentIssue false

Byrudite, (Be,〈)(V3+,Ti)3O6, a new mineral from the Byrud emerald mine, South Norway

Published online by Cambridge University Press:  02 January 2018

G. Raade*
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172 Blindern, NO-0318 Oslo, Norway
T. Balić-Žunić
Affiliation:
Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 København K, Denmark
C. J. Stanley
Affiliation:
Earth Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
*

Abstract

Byrudite (IMA 2013-045, Raade et al., 2013), with simplified formula (Be,〈)(V3+,Ti)3O6, occurs in emerald-bearing syenitic pegmatites of Permian age at Byrud farm, Eidsvoll, Akershus, South Norway. It has a norbergite-type structure, Pnma, with a = 9.982(1), b = 8.502(1), c = 4.5480(6) Å, V = 385.97(9) Å3, Z = 4. The structure was refined to R1 = 0.045 for 1413 unique reflections. Twinning occurs on {210}. The occupancy of the tetrahedral Be site refined to 0.84(1). The presence of Be was verified by secondary ion mass spectrometry but could not be quantified. Electron-microprobe analyses of the crystal used for structure determination gave the empirical formula (Be0.840.16) (V1.323+Ti1.25Cr0.29Fe0.09Al0.07)Σ3.02O6. There is a strong inverse correlation between V and Cr. The ideal endmember formula is BeV23+TiO6. The mineral is black and opaque with a metallic lustre. Reflectance data in air are reported from 400 to 700 nm. The Commission on Ore Mineralogy required wavelengths are [R1, R2(λ in nm)]:16.6,17.5(470), 16.7,17.9(546), 16.8,18.3(589) and 16.8,18.6(650). The Mohs hardness is ∼7, based on indentation measurements. The mineral is brittle with an uneven fracture; cleavage is not present. D(calc.) = 4.35 g cm–3 for the empirical formula with 0.84 Be a.p.f.u. The strongest reflections of the calculated powder X-ray diffraction pattern are [d in Å (Irel)(hkl)]: 3.721(72)(111), 2.965(100)(121), 2.561(50)(311), 2.464(41)(230), 2.167(24)(231), 1.681(34)(402), 1.671(66)(232), 1.435(23)(630).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T., Lazic, B., Reznitsky, L.Z. and Sklyarov, E.V. (2013) Kyzylkumite, Ti2V3+O5(OH): new structure type, modularity and revised formula. Mineralogical Magazine, 77, 3344.CrossRefGoogle Scholar
Balić-Žunić, T. and Raade, G. (2003) The crystal structure of kyzylkumite, BeV2TiO6. Abstracts, 21st European Crystallographic Meeting (Durban, South Africa), 2003, 145. Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Ihlen, P.M. (1978) Ore deposits in the north-eastern part of the Oslo region and in the adjacent Precambrian areas. Pp. 277286. in: Petrology and Geochemistry of Continental Rifts (E.-R. Neumann and I.B. Ramberg, editors). D. Reidel Publishing Company, Dordrecht, The Netherlands.Google Scholar
Koneva, A.A. (2002) Cr-V oxides in metamorphic rocks, Lake Baikal, Russia. Neues Jahrbuch für Mineralogie, Monatshefte, 2002, 541550.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1998) PowderCell for Windows-Version 2.0-Structure Visualisation/ Manipulation, Powder Pattern Calculation and Profile Fitting. Federal Institute for Materials Research and Testing, Berlin, Germany. Nordrum, F.S. and Raade, G. (2006) Das Smaragd-Vorkommen von Byrud (Eidsvoll) in Süd-Norwegen. Mineralien-Welt, 17(4), 5264.Google Scholar
Raade, G. and Balić-Žunić, T. (2006) The crystal structure of (Be)(V,Ti)3O6, a mineral related to kyzylkumite. The Canadian Mineralogist, 44, 11471158.CrossRefGoogle Scholar
Raade, G., Balić-Žunić, T. and Stanley, C.J. (2013) IMA 2013-045. CNMNC Newsletter No. 17, October 2013, page 3000; Mineralogical Magazine, 77, 29973005.Google Scholar
Reznitsky, L.Z., Sklyarov, E.V., Armbruster, T., Suvorova, L.F., Uschapovskaya, Z.F. and Kanakin, S.V. (2013) Kyzylkumite: a finding in the southern Baikal region, Russia and refinement of its crystal chemical formula. Geology of Ore Deposits, 55, 676685.CrossRefGoogle Scholar
Schwarz, D. (1991) Die chemischen Eigenschaften der Smaragde. II. Australien und Norwegen. Zeitschrift der Deutschen Gemmologischen Gesellschaft, 40, 3966.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Smyslova, I.G., Komkov, A.I., Pavshukov, V.V. and Kuznetsova, N.V. (1981) Kyzylkumite, V2Ti3O9, a new mineral of vanadium and titanium of a group of complex oxides. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 110, 607612.Google Scholar
Smyslova, I.G., Komkov, A.I., Pavshukov, V.V. and Kuznetsova, N.V. 1982. English version: Kyzylkumite, V2Ti3O9, a new complex oxide of vanadium and titanium. International Geology Review, 24, 740744.CrossRefGoogle Scholar
Sundvoll, B., Neumann, E.-R., Larsen, B.T. and Tuen, E. (1990) Age relations among Oslo Rift magmatic rocks: implications for tectonic and magmatic modelling. Tectonophysics, 178, 6787.CrossRefGoogle Scholar
Sundvoll, B., Larsen, B.T. and Wandaas, B. (1992) Early magmatic phase in the Oslo Rift and its related stress regime. Tectonophysics, 208, 3754.CrossRefGoogle Scholar