Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T08:13:42.676Z Has data issue: false hasContentIssue false

Bi-Sb energetics in sulfosalts and sulfides

Published online by Cambridge University Press:  05 July 2018

S. Ghosal
Affiliation:
Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, 47907-1397, USA
R. O. Sack*
Affiliation:
Department of Geological Sciences, Box 351310, University of Washington, Seattle, WA, 98195-1310, USA
*
* Corresponding author

Abstract

Experimental brackets (300–450°C) on Sb-Bi partitioning between stibnite-bismuthinites (Sb,Bi)2S3 and sulfosalts in the AgSbS2–AgBiS2 binary subsystem (α-Ag(Sb,Bi)S2, β-Ag5(Sb,Bi)4I(Sb,Bi)IIS10) and extant constraints are used to define mixing properties and standard state Gibbs energies of Sb-Bi exchange reactions. They are also used to construct a phase diagram for Ag(Sb,Bi)S2 sulfosalts. We infer that the non-ideality associated with Sb-Bi mixing is largest in minerals of the β-Ag5(Sb,Bi)4I(Sb,Bi)IIS10 series, and is sufficient to produce miscibility gaps between an ordered intermediate species Ag5(Sb)4I(Bi)IIS10 and Sb- and Bi-end-members at T < 240°C (measured in terms of symmetric regular-solution-type parameters ¼WBi−Sb = WBi−SbIIβ ∼ 8.5 kJ/gfw). The non-ideality associated with the Sb-Bi substitution in stibnite-bismuthinite and α-Ag(Sb,Bi)S2 is ≈ 70% that in the Ag5(Sb,Bi)4I(Sb,Bi)IIS10 series (WBi−SbBS ≈ 12.0 kJ/gfw; WBi−Sbα ≈ 6.0 kJ/gfw). It is insufficient to produce exsolution at temperatures of ore deposition (T > Tc ≈ 88°C), but most likely is responsible for a preponderance in molar Sb/Bi ratios towards end-member compositions. Finally, positive Gibbs energies of the Sb-Bi exchange reactions and indicate that Bi is more compatible in stibnite-bismuthinite sulfides than in Ag(Sb,Bi)S2 sulfosalts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartos, P.J., (1990) Metal ratios of the Quirivilca mining district, northern Peru. Econ. Geol., 85, 1629–44.CrossRefGoogle Scholar
Boldyreva, M.M., (1970) Matildite, β-AgBiS2, from the Tary Ekan deposit, Eastern Karamazar. Dok. Akad. Nauk SSSR, 194, 122–4.Google Scholar
Borodayev, Y.S., Nenasheva, S.N., Gamyanin, G.N., and Mozgova, N.N., (1986) First find of aramayoite-galena-matildite exsolution textures. Dokl. Akad. Nauk SSSR, 290, 192–5.Google Scholar
Brooker, M. and Jaireth, S. (1995) Mount Rawdon, southeast Queensland, Australia - A diatreme-hosted gold-silver deposit. Econ. Geol., 90, 1799–817.CrossRefGoogle Scholar
Bryndzia, L.T., and Kleppa, O.J., (1989) Standard molar enthalpies of formation of sulfosalts in the Ag-As-S system and thermochemistry of the sulfosalts of Ag with As, Sb, and Bi. Amer. Mineral., 74, 243–9.Google Scholar
Bussell, M.A., Alpers, C.N., Petersen, U., Shepherd, T.J., Bermudez, C. and Baxter, A.N., (1990) The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: Studies of structure, mineralogy, metal zoning, Sr isotopes, and fluid inclusions. Econ. Geol., 85, 1348–83.CrossRefGoogle Scholar
Chang, L.L.Y., Knowles, C.R., and Chen, T.T., (1977) Phase relations in the systems Ag2S-Sb2S3-Bi2S3, Ag2S-As2S3-Sb2S3 and Ag2S-As2S3-Bi2S3 . Mem. Geol. Soc. China, 2, 229–37.Google Scholar
Czamanske, G.K., and Hall, W.E., (1975) The Ag-Bi-Pb-Sb-S-Se-Te mineralogy of the Darwin lead-silver-zinc deposit, southern California. Econ. Geol., 70, 1092–110.CrossRefGoogle Scholar
Ghosal, S. and Sack, R.O., (1995) As-Sb energetics in argentian sulfosalts. Geochim. Cosmochim. Acta, 59, 3573–9.CrossRefGoogle Scholar
Gibson, P.C., Noble, D.C., and Larson, L.T., (1990) Multistage evolution of the caldera epithermal Ag-Au vein system, Orcopampa district, southern Peru: first results. Econ. Geol., 85, 1504–19.CrossRefGoogle Scholar
Gilmer, A.L., Clark, K.F., Conde, C.J., Hernandez, I.C., Figueroa, J.I.S., and Porter, E.W., (1988) Sierra de Santa Maria, Velardeña mining dirtrcit, Durango, Mexico. Econ. Geol., 83, 1802–29.CrossRefGoogle Scholar
Goodell, P.C., (1974) A typical sulfosalt environment: The mineralogy of the Julcani district, Peru. Mineral. Mag., 38, 215–21.Google Scholar
Goodell, P.C., and Petersen, U. (1974) Julcani mining district, Peru: A study of metal ratios. Econ. Geol., 69, 347–61.CrossRefGoogle Scholar
Graham, A.R., (1951) Matildite, aramayoite, miargyrite. Amer. Mineral., 36, 436–49.Google Scholar
Gröpper, H., Calvo, M., Crespo, H., Bisso, C.R., Cuadra, W.A., Dunkerley, P.M., and Aguirre, E. (1991) The epithermal gold-silver deposit of Choquelimpie, northern Chile. Econ. Geol., 86, 1206–21.CrossRefGoogle Scholar
Harlov, D.E., and Sack, R.O., (1994) Thermochemistry of polybasite-pearceite solid solutions. Geochim. Cosmochim. Acta, 58, 4363–75.CrossRefGoogle Scholar
Hayase, K. (1955) Minerals of bismuthinite-stibnite series with special reference to horobetsuite from the horobetsu mine, Hokkaido, Japan. Mineral. J., 1, 189–97.CrossRefGoogle Scholar
Jeppson, M. (1987) Mineral chemistry of silver in antimony and bismuth rich sulfide ores in Bergslagen, central Sweden. Neues Jahrb. Mineral. Mon., 5, 205–6.Google Scholar
Johnson, T.W., and Meinert, L.D., (1994) Au-Cu-Ag skarn and replacement mineralization in the McLaren deposit, New World district, Park County, Montana. Econ. Geol., 89, 969–93.CrossRefGoogle Scholar
Keighin, C.W., and Honea, R.M., (1969) The system Ag-Sb-S from 600°C to 200°C. Mineral. Deposita, 4, 153–71.CrossRefGoogle Scholar
Kelly, W.C., and Turneaure, F.S., (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the Eastern Andes, Bolivia. Econ. Geol., 65, 609–80.CrossRefGoogle Scholar
Klein, C. and Hurlburt, C.S. Jr. (1971) Manual of Mineralogy (after Dana, James D.). 20th Edition, John Wiley & Sons, New York.Google Scholar
Knowles, C.R., (1964) A redetermination of the structure of miargyrite, AgSbS2 . Acta Crystallogr., 17, 847–51.CrossRefGoogle Scholar
Lueth, V.W., (1988) Studies of the geochemistry of the semimetal elements: arsenic, antimony, and bismuth. Unpublished Ph.D. thesis, University of Texas at El Paso.Google Scholar
Lueth, V.W., Goodell, P.C., and Pingitore, N.E. Jr., (1990) Encoding the evolution of an ore system in bismuthinite-stibnite compositions: Julcani, Peru. Econ. Geol., 85, 1462–72.CrossRefGoogle Scholar
Mullen, D.J.E., and Nowacki, W. (1974) The crystal structure of aramayoite Ag(Sb,Bi)S2 . Zeits. Krist., 139, 5469.CrossRefGoogle Scholar
Petersen, U., Noble, D.C., Arenas, M.J., and Goodell, P.C., (1977) Geology of the Julcani mining district, Peru. Econ. Geol., 72, 931–49.CrossRefGoogle Scholar
Petruk, W. (1968) Mineralogy and origin of the Silversfield silver deposit in the Cobalt area, Ontario. Econ. Geol., 63, 512–31.CrossRefGoogle Scholar
Ruvalcaba-Ruiz, D.C., and Thompson, T.B., (1988) Ore deposits at the Fresnillo mine, Zacatecas, Mexico. Econ. Geol., 83, 1583–96.CrossRefGoogle Scholar
Sack, R.O., (1992) Thermochemistry of tetrahedrite-tennantite fahlores. In The Stability of Minerals (Ross, N.L. and Price, G.D., eds), Chapman & Hall, London, pp. 243–66.Google Scholar
Sack, R.O., and Ghiorso, M.S., (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2 . Contrib. Mineral. Petrol., 102, 4168.CrossRefGoogle Scholar
Sillitoe, R.H., Halls, C. and Grant, J.N., (1975) Porphyry tin deposits in Bolivia. Econ. Geol., 70, 913–27.CrossRefGoogle Scholar
Springer, G. (1969) Naturally occurring compositions in the solid-solution series Bi2S3-Sb2S3 . Mineral. Mag., 37, 294–6.CrossRefGoogle Scholar
Springer, G. and Laflamme, J.H.G., (1971) The system Bi2S3-Sb2S3 . Canad. Mineral., 10, 847–53.Google Scholar
Van Hook, H.J., (1960) The ternary system Ag2S-Bi2S3-PbS. Econ. Geol., 55, 759–88.CrossRefGoogle Scholar
Stone, J.G., (1959) Ore genesis in the Naica district, Chihuahua, Mexico. Econ. Geol., 54, 1002–34.CrossRefGoogle Scholar
Turneaure, F.S., (1971) The Bolivian tin-silver province. Econ. Geol., 66, 215–25.CrossRefGoogle Scholar