Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T21:56:38.906Z Has data issue: false hasContentIssue false

The astrophyllite supergroup: nomenclature and classification

Published online by Cambridge University Press:  02 January 2018

Elena Sokolova*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Fernando Cámara
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, I-10125 Torino, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Marco E. Ciriotti
Affiliation:
AMI – Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Ciriè, Italy
*

Abstract

Here we report a nomenclature and classification for the astrophyllite-supergroup minerals. The HOH block is the main structural unit in all astrophyllite-supergroup structures; it consists of three H–O–H sheets where the T4O12 astrophyllite ribbons occur in the H sheets. In each structure, HOH blocks alternate with I (Intermediate) blocks along [001]. The twelve minerals of the astrophyllite supergroup are divided into three groups based on (1) the type of self-linkage of HOH blocks, i.e. (a) HOH blocks link directly where they share common vertices of D octahedra, or (b) HOH blocks do not link directly; and (2) the dominant cation of the O sheet (the C group: C7 apfu). In the astrophyllite group (HOH blocks connect via D– XDP–D bridges, Fe2+ is dominant at C7), there are six minerals: astrophyllite, niobophyllite, zircophyllite, tarbagataite, nalivkinite and bulgakite. In the kupletskite group (HOH blocks connect via D–XDP–D bridges, Mn2+ is dominant at C7), there are three minerals: kupletskite, niobokupletskite and kupletskite-(Cs). In the devitoite group (HOH blocks do not connect via D–XDP–D bridges), there are three minerals: devitoite, sveinbergeite and lobanovite. The general formula for the astrophyllite-supergroup minerals is of the form A2pBrC7D2(T4O12)2IXD2OXA4OXDnPWA2, where C [cations at the M(1–4) sites in the O sheet] = Fe2+, Mn, Na, Mg, Zn, Fe3+, Ca, Zr, Li; D (cations in the H sheets) = [6,5]Ti, Nb, Zr, Sn4+ , [5]Fe3+, Mg, Al; T = Si, minor Al; A2pBrIWA2 (I block) where p = 1,2; r = 1,2; A = K, Cs, Ba, H2O, Li, Rb, Pb2+, Na,□; B = Na, Ca, Ba, H2O,□; I represents the composition of the central part of the I block, excluding peripheral layers of the form A2pBrWA2, e.g. (PO4)2(CO3) (devitoite); XDO = O; XAO = OH, F; XDP = F, O, OH, H2O,□, where n = 0, 1, 2 for (XDP)n; WA = H2O,□.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agakhanov, A.A., Pautov, L.A., Uvarova, Y.A., Sokolova, E., Hawthorne, F.C. and Karpenko, V.Yu. (2008) Nalivkinite, Li2NaFe27 þTi2(Si8O24)O2(OH)4F, a new mineral of the astrophy llite group from the Darai-Pioz massif, Tadjikistan. New Data on Minerals, 43, 512.Google Scholar
Agakhanov, A. A., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Karpenko, YY (2014) Bulgakite, IMA 2014-041. Mineralogical Magazine, 78, 12411248.Google Scholar
Agakhanov, A.A., Pautov, L.A., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Karpenko, V.Y. (2016) Two astrophyllite-supergroup minerals, bulgakite and nalivkinite: bulgakite, a new mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal structure and chemical formula of nalivkinite. The Canadian Mineralogist, 54, 33–8.CrossRefGoogle Scholar
Belov, N.V. (1963) Essays on structural mineralogy. XIV. 97. Ba,Fe-titanosilicate - bafertisite. 98. Anion role of Ti and Zr. Titanates, zirconates, titanosilicates, zirco-nosilicates. Mineralogicheskii Sbornik L'vovskogo Geologicheskogo Obshchestva, N17, 2229 [in Russian].Google Scholar
Belov, N.V. (1976) Essays on Structural Mineralogy. Nedra, Moscow [in Russian].Google Scholar
Cámara, F., Sokolova, E., Abdu, Y and Hawthorne, F.C. (2010) The crystal structures of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite; revisions to the crystal chemistry of the astrophyllite-group minerals. The Canadian Mineralogist, 48, 116.CrossRefGoogle Scholar
Cámara, F., Sokolova, E., Abdu, Y.A. and Hawthorne, F.C. (2014) Nafertisite, Na3Fe102þTi2(Si6O17)2O2(OH)6F (H2O)2, from Mt. Kukisvumchorr, Khibiny alkaline massif, Kola peninsula, Russia: Refinement of the crystal structure and revision of the chemical formula. European Journal of Mineralogy, 26, 689700.CrossRefGoogle Scholar
Kampf, A.R., Rossman, G.R., Steele, I.M., Pluth, J.J., Dunning, G.E. and Walstrom, R.E. (2010) Devitoite, a new heterophyllosilicate mineral with astrophyllite-like layers from eastern Fresno County, California. The Canadian Mineralogist, 48, 2940.CrossRefGoogle Scholar
Kapustin, Y.L. (1972) Zircophyllite — the zirconium analogue of astrophyllite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 101(4), 459463 [in Russian].Google Scholar
Khomyakov, A.P, Camara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y (2011) Sveinbergeite, Ca(Fe62þFe3+) Ti2(Si4O12)2O2(OH)5(H2O)4, a new astrophyllite-group mineral species from the Larvik plutonic complex, Oslo region, Norway: description and crystal structure. Mineralogical Magazine, 75, 26872702.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Nickel, E.H., Rowland, J.F. and Charette, D.J. (1964) Niobophyllite - the niobium analogue of astrophyllite; a new mineral from Seal Lake, Labrador. The Canadian Mineralogist, 8, 4052.Google Scholar
Piilonen, P.C., Lalonde, A.E., Mcdonald, A.M. and Gault, R.A. (2000) Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and crystal structure. The Canadian Mineralogist, 38, 627639.CrossRefGoogle Scholar
Piilonen, P.C., McDonald, A.M. and Lalonde, A.E. (2001) Kupletskite polytypes from the Lovozero massif, Kola Peninsula, Russia: kupletskite- 1A and kupletskite-Ma2b2c. European Journal of Mineralogy, 13, 973984.Google Scholar
Piilonen, P.C., LaLonde, A.E., McDonald, A.M., Gault, R.A. and Larsen, A.O. (2003a) Insights into astro-phyllite-group minerals. I. Nomenclature, composition and development of a standardized general formula. The Canadian Mineralogist, 41, 126.CrossRefGoogle Scholar
Piilonen, P.C., McDonald, A.M. and LaLonde, A.E. (2003b) Insights into astrophyllite-group minerals. II. Crystal chemistry. The Canadian Mineralogist, 41, 2754.CrossRefGoogle Scholar
Piilonen, P.C., Pekov, I.V., Back, M., Steede, T. and Gault, R.A. (2006) Crystal-structure refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to the geochemistry of zinc in peralka-line environments. Mineralogical Magazine, 70, 565578.CrossRefGoogle Scholar
Semenov, E.I. (1956) Kupletskite, a new mineral of the astrophyllite group. Doklady Akademii Nauk SSSR, 108, 933936 [in Russian].Google Scholar
Sokolova, E. (2006) From structure topology to chemical composition: I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.CrossRefGoogle Scholar
Sokolova, E. (2012) Further developments in the structure topology of the astrophyllite-group minerals. Mineralogical Magazine, 76, 863882.CrossRefGoogle Scholar
Sokolova, E. and Cámara, F. (2008) Re-investigation of the crystal structure of magnesium astrophyllite. European Journal of Mineralogy, 20, 253260.CrossRefGoogle Scholar
Sokolova, E. and Hawthorne, F.C. (2016) The crystal structure of zircophyllite, K2NaFe27þ Zr2(Si4O12)2O2(OH)4F, an astrophyllite-supergroup mineral from Mont Saint-Hilaire, Québec, Canada. Canadian Mineralogist (accepted).CrossRefGoogle Scholar
Sokolova, E., Cámara, F., Hawthorne, EC, Semenov, E.I. and Ciriotti, M.E. (2017) Lobanovite, K2Na (Fe42þMg2Na)Ti2(Si4O12)2O2(OH)4, a new mineral of the astrophyllite supergroup and its relation to magnesioastrophyllite. Mineralogical Magazine, 81, 171177.CrossRefGoogle Scholar
Stepanov, A.V., Bekenova, G.K., Levin, V.L., Sokolova, E.V., Hawthorne, F.C. and Dobrovolskaya, E.A. (2012) Tarbagataite, (K,D)2(Ca,Na)(Fe2+,Mn)7Ti2(Si4O12)2O2(OH)4(OH,F), a new astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan: description and crystal structure. The Canadian Mineralogist, 50, 159168.CrossRefGoogle Scholar
Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Agakhanov, A.A. and Pautov, L.A. (2008) The crystal structure of nalivlinite, a new lithium member of the astrophyllite group. The Canadian Mineralogist, 46, 651659.CrossRefGoogle Scholar
Weibye, P.C. (1848) Beiträge zur topographischen Mineralogie Norwegens. Archiv für Mineralogie, Geognosie Bergbau und Hüttenkunde, 22, 465544 [in German].Google Scholar
Yefimov, A.F., Dusmatov, V.D., Ganzeyev, A.A. and Katayeva, Z.T (1971) Cesium kupletskite, a new mineral. Doklady of the Academy of Sciences U.S.S.R., Earth Sciences, 197, 140143.Google Scholar