Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:59:43.241Z Has data issue: false hasContentIssue false

Asbestiform sepiolite coated by aliphatic hydrocarbons from Perletoa, Aosta Valley Region (Western Alps, Italy): characterization, genesis and possible hazards

Published online by Cambridge University Press:  05 July 2018

R. Giustetto*
Affiliation:
Department of Earth Sciences, University of Turin, via Valperga Caluso 35, 10125 Turin, Italy NIS Centre (Nanostructured Interfaces and Surfaces), via Quarello 11, 10135 Turin, Italy
K. Seenivasan
Affiliation:
NIS Centre (Nanostructured Interfaces and Surfaces), via Quarello 11, 10135 Turin, Italy
E. Belluso
Affiliation:
Department of Earth Sciences, University of Turin, via Valperga Caluso 35, 10125 Turin, Italy NIS Centre (Nanostructured Interfaces and Surfaces), via Quarello 11, 10135 Turin, Italy CNR, Institute of Geosciences and Earth Resources, via Valperga Caluso 35, 10125 Turin, Italy
*

Abstract

An atypical asbestiform sepiolite occurrence with exceptionally long fibres wrapped by a sheath of aliphatic hydrocarbons was found in the Gressoney Valley (Italian Western Alps) while monitoring asbestos presence in outcrops of serpentinite rocks. Microscopic and Fourier transform infrared analyses proved that these fibres, apparently up to several cm long, are formed by bundles of thinner fibrils (average length: 150 μm) potentially dispersible in the environment. When observed using transmission electron microscopy these fibrils show a rhomboidal to parallelogram cross section (<1 μm), of which surfaces are covered mostly by an aliphatic hydrocarbon film – an association not reported in the literature. The sepiolite fibrils and their organic coating probably originated in sequential steps from precipitation of Si/Mg rich hydrothermal fluids, resulting from serpentinization of olivine and clinopyroxene and a Fischer-Tropsch-type reaction. The presence of hydrocarbons has serious implications for the sepiolite habit, as the organic wrap interacts with the fibril’s surface reducing the amount of adsorbed water and favouring the fragmentation of thicker units into thinner ones, due to an ‘opening’ process implying separation along z and cleavage on (110). This defibrillation mechanism, coupled with the extraordinary length, further increases the aspect ratio of these fibrils (length/width ≫3) thus amplifying their potential danger for human health when dispersed in air and inhaled.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, C., Knaapen, A.M., Becker, A., Höhr, D., Haberzettl, P., van Schooten, F.J., Borm, P.J. and Schins, R.P. (2005) The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respiratory Research, DOI: 10.1186/1465-9921-6-129.CrossRefGoogle Scholar
Àlvarez, A., Santarén, J., Esteban-Cubillo, A. and Aparaicio P. (2011) Current industrial applications of palygorskite and sepiolite. Pp. 281–298 in: Developments in Palygorskite–Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
Artioli, G. and Galli, E. (1994) The crystal structures of orthorhombic and monoclinic palygorskite. Material Science Forum, 166, 647652.Google Scholar
Augustin, N., Lackschewitz, K.S., Kuhn, T. and Dewey, C.W. (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Marine Geology, 256(1–4), 1829.CrossRefGoogle Scholar
Bach, W. and Früh-Green, G.L. (2010) Alteration of the oceanic lithosphere and its implications for seafloor processes. Elements, 6, 173178.CrossRefGoogle Scholar
Bailey, S.W., Alietti, A., Brindley, G.W., Formosa, M.L.L., Jasmund, K., Konta, J., Mackenzie, R.C., Nagasawa, K., Rausell-Colom, R.A. and Zvyagin, B.B. (1980) Summary of recommendations of AIPEA nomenclature committee. Clays and Clay Minerals, 28, 7378.Google Scholar
Bellman, B., Muhle, H. and Ernst, H. (1997) Investigations on health-related properties of two sepiolite samples. Environmental Health Perspectives, 105(5), 10491052.Google Scholar
Belluso, E. and Sandrone, R. (1989) Occurrence of sepiolite in the marbles of the Dora Maira Massif (Italian Western Alps). Mineralogica et Petrographica Acta, 32, 6774.Google Scholar
Belluso, E., Compagnoni, R. and Ferraris, G. (1995) Occurrence of asbestiform minerals in the serpentinites of the Piemonte Zone, Western Alps. Pp. 57–64 in: Giornata di studio in ricordo del Prof. Stefano Zucchetti, Politecnico di Torino. Dipartimento Georisorse e Territorio, 12 Maggio 1994. Contribution volume, Tipolitografia Edicta, Turin, Italy.Google Scholar
Benli, B., Du, H. and Celik, M.S. (2012) The anisotropic characteristics of natural fibrous sepiolite as revealed by contact angle, surface free energy, AFM and molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 408, 2231.CrossRefGoogle Scholar
Birsoy, R. (2002) Formation of sepiolite–palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736745.CrossRefGoogle Scholar
Bonatti, E., Craig Simmons, E., Breger, D., Hamlyn, P.R. and Lawrence, J. (1983) Ultramafic rock/ seawater interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor. Earth and Planetary Science Letters, 62, 229238.CrossRefGoogle Scholar
Boschi, C., Früh-Green, G.L., Delacour, A., Karson, J.A. and Kelley, D.S. (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochemistry, Geophysics, Geosystems, DOI: 10.1029/2005GC001074.Google Scholar
Brauner, K. and Preisinger, A. (1956) Structur und Enstehung dessepioliths. Tschermak s Mineralogische und Petrographische Mitteilungen, 6, 12.Google Scholar
Brell, J.M., Doval, M. and Caramés, M. (1985) Clay mineral distribution in the evaporitic Miocene sediments of the Tajo Basin, Spain. Mineralogica et Petrographica Acta, 29-A, 267276.Google Scholar
Brindley, G.W. (1959) X-ray and electron diffraction data for sepiolite. American Mineralogist, 44, 495500.Google Scholar
Bukas, V.J., Tsampodimou, M., Gionis, V. and Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 5160.CrossRefGoogle Scholar
Caillère, S. and Hénin, S. (1957) The sepiolite and palygorskite minerals. Pp. 231–247 in: The Differential Thermal Investigation of Clays (R.C. Mackenzie, editor). Mineralogical Society, London.Google Scholar
Cannings, F.R. (1968) An Infrared study of hydroxyl groups in sepiolite. Journal of Physical Chemistry, 72, 10721074.CrossRefGoogle Scholar
Chahi, A., Fritz, B., Duplay, J., Weber, F. and Lucas, J. (1997) Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays and Clay Minerals, 45, 378389.CrossRefGoogle Scholar
Charlou, J.L., Fouquet, Y., Bougault, H., Donval, J.P., Etoubleau, J., Jean-Baptiste, P., Dapoigny, A., Appriou, P. and Rona, P.A. (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20’N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 62 (13), 23232333.CrossRefGoogle Scholar
Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P. and Holm, N. (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks of the Rainbow hydrothermal field, 36°14’N MAR. Chemical Geology, 191, 345359.CrossRefGoogle Scholar
Chiari, G., Giustetto, R. and Ricchiardi, G. (2003) Crystal structure refinements of palygorskite and Maya Blue from molecular modeling and powder synchrotron diffraction. European Journal of Mineralogy, 15, 2133.CrossRefGoogle Scholar
Ciliberto, E., Crisafulli, C., Manuella, F.C., Samperi, F., Scirè, S., Scribano, V., Viccaro, M. and Viscuso, E. (2009) Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diametres (Sicily): genesis in a serpentinite hydrothermal system. Chemical Geology, 258, 258268.CrossRefGoogle Scholar
Coelho, R.R., Hovell, I., de Mello Monte, M.B., Middea, A. and de Souza, A.L. (2006) Characterisation of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and FTIR techniques. Fuel Processing Technology, 87, 325333.CrossRefGoogle Scholar
Cuevas, J., Leguey, S. and Ruiz, A.I. (2012) Evidence for the biogenic origin of sepiolite. Pp. 219–238 in: Developments in Palygorskite–Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 19, 267272.CrossRefGoogle Scholar
Dos Anjos, C.W.D., Meunier, A., Guimaraès, E.M. and El Albani, A. (2010) Saponite-rich black shales and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism (ParanáBasin, Brazil). Clays and Clay Minerals, 58, 606626.CrossRefGoogle Scholar
Ece, Ö.I. and Çoban, F. (1994) Geology, occurrence and genesis of Eskis–ehir sepiolites, Turkey. Clays and Clay Minerals, 42, 8192.CrossRefGoogle Scholar
Emeis, K.C. and Weissert, H. (2009) Tethyan- Mediterranean organic carbon-rich sediments from Mesozoic black shales to sapropels. Sedimentology, 56, 247266.CrossRefGoogle Scholar
Eugster, H.P. and Hardie, L.A. (1975) Sedimenation in an ancient playa-lake complex: the Wilkins Peak member of the Green River Formation of Wyoming. Geological Society of America Bulletin, 86, 319334.2.0.CO;2>CrossRefGoogle Scholar
Farinha, A., Assunção, J. and Vinhas, J. (2011) Renal toxicity of inhaled aliphatic hydrocarbons: a case report of chronic interstitial nephropathy. Portuguese Journal of Nephrology and Hypertension, 25(1), 4346.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of Modular Materials. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry due to axial convergence. Journal of Applied Crystallography, 27, 892900.CrossRefGoogle Scholar
Frost, R.L. and Ding, Z. (2003) Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397, 119128.CrossRefGoogle Scholar
Frost, R.L., Cash, G.A. and Kloprogge, J.T. (1998) ‘Rocky Mountain leather’, sepiolite and attapulgite – an infrared emission spectroscopic study. Vibrational Spectroscopy, 16, 173184.CrossRefGoogle Scholar
Frost, R.L., Kristf, J. and Horvàth, E. (2009) Controlled rate thermal analysis of sepiolite. Journal of Thermal Analysis and Calorimetry, 98(3), 749755.CrossRefGoogle Scholar
Frost, R.L., Locos, O.B., Ruan, H. and Kloprogge, J.T. (2001) Near-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27, 113.CrossRefGoogle Scholar
Früh-Green, G.L., Weissert, H. and Bernoulli, D. (1990) A multiple fluid history recorded in Alpine ophiolites. Journal of the Geological Society of London, 147, 959970.CrossRefGoogle Scholar
Galán, E. and Pozo, M. (2011) Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. Pp. 131–135 in: Developments in Palygorskite–Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
García-Romero, E. and Suárez, M. (2010) On the chemical composition of sepiolite and palygorskite. Clays and Clay Minerals, 58, 120.CrossRefGoogle Scholar
García-Romero, E. and Suárez, M. (2013) Sepiolite– palygorskite: textural study and genetic considerations. Applied Clay Science, 86, 129144.CrossRefGoogle Scholar
García-Romero, E., Suárez, M., Santaren, J. and Alvarez, A. (2007) Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays and Clay Minerals, 55, 606617.CrossRefGoogle Scholar
Gasco, I. and Gattiglio, M. (2011) Geological map of the Upper Gressoney Valley. Journal of Maps, 6(1), 82102.Google Scholar
Giustetto, R. and Chiari, G. (2004) Crystal structure refinement of palygorskite from neutron powder diffraction. European Journal of Mineralogy, 16, 521532.CrossRefGoogle Scholar
Giustetto, R. and Compagnoni, R. (2011) An unusual occurrence of palygorskite from Montestrutto, Sesia- Lanzo Zone, internal Western Alps (Italy). Clay Minerals, 46, 371385.CrossRefGoogle Scholar
Giustetto, R., Seenivasan, K. and Bordiga, S. (2010) Spectroscopic characterization of a sepiolite-based Maya Blue pigment. Periodico di Mineralogia, 79, 2137.Google Scholar
Giustetto, R., Levy, D., Wahyudi, O., Ricchiardi, G. and Vitillo, J.G. (2011a) Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffraction. European Journal of Mineralogy, 23, 449466.CrossRefGoogle Scholar
Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M.R. and Gobetto, R. (2011b) Host/guest interactions in a sepiolite-based Maya Blue pigment: a spectroscopic study. Journal of Physical Chemistry C, 115, 1676416776.CrossRefGoogle Scholar
Giustetto, R., Wahyudi, O., Corazzari, I. and Turci, F. (2011c) Chemical stability and dehydration behaviour of a sepiolite/indigo Maya Blue pigment. Applied Clay Science, 52, 4150.CrossRefGoogle Scholar
Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G. and Bordiga, S. (2012) Spectroscopic characterization and photo-thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. Microporous and Mesoporous Materials, 155, 167176.CrossRefGoogle Scholar
Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York.Google Scholar
Guggenheim, S. and Krekeler, M.P.S. (2011) The structure and microtextures of the palygorskitesepiolite group minerals. Pp. 15–16 in: Developments in Palygorskite–Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
Gunter, M.E., Belluso, E. and Mottana, A. (2007) Amphiboles: environmental and health concerns. Pp. 453–516 in: Amphiboles: Crystal Chemistry, Occurrence and Heath Issues (F.C. Hawthorne, R. Oberti, G., Della Ventura, A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hayashi, H., Otsuka, R. and Imai, N. (1969) Infrared study of sepiolite and palygorskite on heating. American Mineralogist, 54, 16131624.Google Scholar
Hubbard, B., Wenxing, K., Moser, A., Facey, G.A. and Detellier, C. (2003) Structural study of Maya Blue: textural, thermal and solid-state multinuclear magnetic resonance characterization of the palygorskiteindigo and sepiolite-indigo adducts. Clays and Clay Minerals, 51(3), 318326.CrossRefGoogle Scholar
IARC (1997) Sepiolite. Pp. 267–282 in: Monographs on the evaluation of carcinogenic risks to humans; Silica, some silicates, coal dust and para-aramid fibrils. International Agency for Research on Cancer [IARC], World Health Organization, 68.Google Scholar
IARC, Lyon. France. IARC (2012) Arsenic, metals, fibres, and dusts. Pp. 501 in: Monographs on the evaluation of carcinogenic risks to humans; A review of human carcinogens. International Agency for Research on Cancer [IARC], World Health Organization, 100 C. IARC, Lyon. France.Google Scholar
Imai, N. and Otsuka, R. (1984) Sepiolite and palygorskite in Japan. Pp. 211–232 in: Palygorskite–Sepiolite: Occurrences, Genesis and Uses (A. Singer and E. Galán, editors). Developments in Sedimentology, 37. Elsevier B.V., Amsterdam.Google Scholar
Jeffrey, G.A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, UK.Google Scholar
Jones, B.F. and Galán, E. (1988) Palygorskite and sepiolite. Pp. 631–674 in: Hydrous Phyllosilicates (excluive of micas) (S.W. Bailey, editor), Reviews in Mineralogy, 19. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Jung, S.M. and Grange, P. (2004) Characterization of the surface hydroxyl properties of sepiolite and Ti(OH)4 and investigation of new properties generated over physical mixture of Ti(OH)4- sepiolite. Applied Surface Science, 221, 167177.CrossRefGoogle Scholar
Karakaya, M.C., Karakaya, N. and Temel, A. (2011) Mineralogical and geochemical characteristics and genesis of the sepiolite deposits at Polatli basin (Ankara, Turkey). Clays and Clay Minerals, 59, 286314.CrossRefGoogle Scholar
Kavas, T., Sabah, E. and Celik, M.S. (2004) Structural properties of sepiolite-reinforced cement composite. Cement and Concrete Research, 34, 21352139.CrossRefGoogle Scholar
Klein, F. and Garrido, C.J. (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos, 126, 147160.CrossRefGoogle Scholar
Konn, C., Charlou, J.L., Donval, J.P., Holm, N.G., Dehairs, F. and Bouillon, S. (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 258, 299314.CrossRefGoogle Scholar
Krekeler, M.P.S. and Guggenheim, S. (2009) Defects in microstructure in palygorskite–sepiolite minerals: a transmission electron microscopy (TEM) study. Applied Clay Science, 39, 98105.CrossRefGoogle Scholar
Lagabrielle, Y. and Lemoine, M. (1997) Alpine, Corsican, Apennine ophiolites: the slow-spreading ridge model. Ophiolites des Alpes, de Corse et des dorsales lentes. Comptes Rendus de l’Académie des Sciences, 325, 909920.Google Scholar
Larson, A.C. and Von Dreele, R.B. (2007) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. LAUR 86–748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Lavoie, D. and Chi, G. (2010) An Ordovician “Lost City” – venting serpentinite and life oases on lapetus seafloor. Canadian Journal of Earth Sciences, 47, 199207.CrossRefGoogle Scholar
Leguey, S., Ruiz de Len, D., Ruiz, A.I. and Cuevas, J. (2010) The role of biomineralization in the origin of sepiolite and dolomite. American Journal of Science, 310, 165193.CrossRefGoogle Scholar
Lòpez-Galindo, A., Viseras, C., Aguzzi, C., Cerezo, P. (2011) Pharmaceutical and cosmetic uses of fibrous clays. Pp. 299–324 in: Developments in Palygorskite–Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
Macdonald, A.H. and Fyfe, W.S. (1985) Rate of serpentinization in seafloor environments. Tectonophysics, 116, 123135.CrossRefGoogle Scholar
Mahlen, N.J., Johnson, C.M., Baumgartner, L.P. and Beard, B.L. (2005) Provenance of Jurassic Tethyan sediments in the HP/UHP Zermatt-Saas Ophiolite, Western Alps. Geological Society of America Bulletin, 117, 530544.Google Scholar
Manatschal, G. and Müntener, O. (2009) A type sequence across an ancient magma-poor oceancontinent transition: the example of the western Alpine Tethys ophiolites. Tectonophysics, 473, 419.CrossRefGoogle Scholar
Manuella, F.C., Carbone, S. and Barreca, G. (2012) Origin of saponite-rich clays in a fossil serpentinitehosted hydrothermal system in the crustal basement of the Hyblean plateau (Sicily, Italy). Clays and Clay Minerals, 60, 1831.CrossRefGoogle Scholar
Marcaillou, C., Muñoz, M., Vidal, O., Parra, T. and Harfouche, M. (2011) Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth and Planetary Science Letters, 303, 281290.CrossRefGoogle Scholar
March, A. (1932) Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. Zeitschrift für Kristallographie, 81, 285297.Google Scholar
Martin Vivaldi, J.L. and Cano Ruiz, J. (1956). Contribution to the study of sepiolite, III. The dehydration process and the types of water molecules. Clays and Clay Minerals, 4, 177180.CrossRefGoogle Scholar
Martin Vivaldi, J.L. and Fenoll Hach-Ali, P. (1970) Palygorskite and sepiolite (Hormites). Pp. 553–573 in: Differential thermal analysis (R.M. Mackenzie, editor). Academic Press, London.Google Scholar
Mayayo, M.J., Torres-Ruiz, J., Gonzalez-Lopez, J.M., Lopez-Galindo, A. and Bauluz, B. (1998) Mineralogical and Chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud basin, Spain). European Journal of Mineralogy, 10, 367383.CrossRefGoogle Scholar
Mendelovici, E. (1973) Infrared study of attapulgite and HCl treated attapulgite. Clays and Clay Minerals, 21, 115119.CrossRefGoogle Scholar
Mendelovici, E. and Portillo, D.C. (1976) Organic derivatives of attapulgite-I. Infrared spectroscopy and X-ray diffraction studies. Clays and Clay Minerals, 24, 177182.CrossRefGoogle Scholar
Mifsud, A., Garcia, I. and Corma, A. (1987) Thermal stability and textural properties of exchanged sepiolites. Pp. 392–394 in: Proceedings Euroclay ’87. Sociedad Espanola de Arcilla, Seville, Spain.Google Scholar
Myriam, M., Suárez, M. and Martìn-Pozas, J.M. (1998). Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals, 46, 225231.CrossRefGoogle Scholar
Nagata, H., Shimoda, S. and Sudo, T. (1974) On dehydration of bound water in sepiolite. Clays and Clay Minerals, 22, 285293.CrossRefGoogle Scholar
Nagy, B. and Bradley, W.F. (1955) The structural scheme of sepiolite. American Mineralogist, 40, 885892.Google Scholar
Noda, H., Miyagawa, K., Kobayashi, M., Horiguchi, H., Ozawa, K., Kumada, N., Yonesaki, Y., Takei, T. and Kinomura, N. (2009) Preparation of cordierite from fibrous sepiolite. Journal of the Ceramic Society of Japan, 117, 12361239.CrossRefGoogle Scholar
Ordoñez, S., Calvo, J.P., Garcìa del Cura, M.A., Alonso Zarza, A.M. and Hoyos, M. (1991) Sedimentology of sodium sulphate deposits and special clays from the Tertiary Madrid Basin (Spain). Pp. 39–55 in: Lacustrine Facies Analysis (P. Anadón, L.I. Cabrera and K. Kelts, editors). Special Publication of the International Association of Sedimentologists, 13, Blackwell Scientific Publications, Oxford, UK.Google Scholar
Ovarlez, S., Chaze, A.M., Giulieri, F. and Delamare, F. (2006) Indigo chemisorption in sepiolite. Application to Maya Blue formation. Comptes Rendu Chimie, 9, 12431248.CrossRefGoogle Scholar
Ovarlez, S., Giulieri, F., Chaze, A.M., Delamare, F., Raya, J. and Hirschinger J. (2009) The incorporation of indigo molecules in sepiolite tunnels. Chemistry – A European Journal, 15, 1132611332.CrossRefGoogle ScholarPubMed
Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N. and Chaze, A.M. (2011) Indigo-sepiolite nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo-palygorskite systems. Microporous and Mesoporous Materials, 142, 371380.CrossRefGoogle Scholar
Piccardo, G.B. (2008) The Jurassic Ligurian Tethys, a fossil, ultraslow-spreading ocean; the mantle perspective. Pp. 11–34 in: Metasomatism in Oceanic and Continental Lithospheric Mantle (M. Coltori and M. Gregoire, editors). Geological Society, London, Special Publications, 293. Geological Society of London, London.CrossRefGoogle Scholar
Piccardo, G.B., Rampone, E., Romairone, A., Scambelluri, M., Tribuzio, R. and Beretta, C. (2001) Evolution of the Ligurian Tethys: inference from petrology and geochemistry of the Ligurian ophiolites. Periodico di Mineralogia, 70, 147192.Google Scholar
Pikovskii, Y.I., Chernova, T.G., Alekseeva, T.A. and Verkhovskaya, Z.I. (2004) Composition and nature of hydrocarbons in modern serpentinization areas in the ocean. Geochemistry International, 42, 971976.Google Scholar
Post, J.E. (1978) Sepiolite deposits of the Las Vegas, Nevada Area. Clays and Clay Minerals, 26, 5864.CrossRefGoogle Scholar
Post, J.E. and Heaney, P.J. (2008) Synchrotron powder diffraction study of the structure and dehydration behavior of palygorskite. American Mineralogist, 93, 667675.CrossRefGoogle Scholar
Post, J.E., Bish, D.L. and Heaney, P.J. (2007) Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist, 92, 9197.CrossRefGoogle Scholar
Pott, F., Bellman, B., Muhle, H., Rödelsperger, K., Rippe, R.M., Roller, M. and Rosenbruch, M. (1990) Intraperitoneal injection studies for the evaluation of the carcinogenicity of fibrous phyllosilicates. Pp. 319–329 in: Health Related Ef fects of Phyllosilicates (J. Bignon, editor). North Atlantic Treaty Organization Advanced Study Institute Series, Vol. G21, Ecological Sciences, Springer-Verlag, Berlin.Google Scholar
Pott, F., Roller, M., Rippe, R.M., Germann, P.G. and Bellman, B. (1991) Tumors by the intraperitoneal and intrapleural routes and their significance for the classification of mineral fibres. Pp. 547–565 in: Mechanisms in Fibre Carcinogenesis (R.C. Brown, J.A. Hoskins and N.F. Johnson, editors). Plenum Press, New York/London.Google Scholar
Preisinger, A. (1959) X-ray study of the structure of sepiolite. Clays and Clay Minerals, 6, 6167.CrossRefGoogle Scholar
Preisinger, A. (1963) Sepiolite and related compounds: its stability and application. Clays and Clay Minerals, 10, 365371.CrossRefGoogle Scholar
Prost, R. (1975) Infrared study of the interactions between the different kinds of water molecules present in sepiolite. Spectrochimica Acta, 31A, 1497–1499.CrossRefGoogle Scholar
Rautureau, M. and Mifsud, A. (1977) Etude par microscope électronique des differents états d’hydratation de la sepiolite. Clay Minerals, 12, 309318.CrossRefGoogle Scholar
Ribeiro da Costa, I., Barriga, F.J.A.S. and Taylor, R.N. (2008) Late seafloor carbonate precipitation in serpentinites from the Rainbow and Saldanha sites (Mid-Atlantic-Ridge). European Journal of Mineralogy, 20, 173181.CrossRefGoogle Scholar
Ruiz, R., del Moral, J.C., Pesquera, C., Benito, I. and González, F. (1996) Reversible folding in sepiolite: study by thermal and textural analysis. Thermochimica Acta, 279, 103110.CrossRefGoogle Scholar
Sanchez del Rio, M., Garcia-Romero, E., Suárez, M., da Silva, I., Fuentes Montero, L. and Martinez-Criado, G. (2011) Variability in sepiolite: Diffraction studies. American Mineralogist, 96, 14431454.CrossRefGoogle Scholar
Sárossy, Z., Blomfeldt, T.O.J., Hedenqvist, M.S., Bender Koch, C., Sinha Ray, S. and Plackett, D. (2012) Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical and barrier properties. Applied Materials and Interfaces, 4, 33783386.Google ScholarPubMed
Schins, R.P., Duffin, R., Höhr, D., Knaapen, A.M., Shi, T., Weishaupt, C., Stone, V., Donaldson, K. and Borm, P.J. (2002) Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chemical Research in Toxicology, 15, 11661173.CrossRefGoogle ScholarPubMed
Schoell, M. (1988) Multiple origins of methane in the Earth. Chemical Geology, 71, 110.CrossRefGoogle Scholar
Schroeder, T., John, B. and Frost, B.R. (2002) Geologic implication of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology, 30, 367370.2.0.CO;2>CrossRefGoogle Scholar
Schulz, H. (1999) Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: General, 186, 312.CrossRefGoogle Scholar
Schwarzenbach, E., Früh-Green, G.L., Bernasconi, S.M., Alt, J.C., Shanks, W.C., Gaggero, L. and Crispini, L. (2012) Sulphur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian ophiolites with oceanic serpentinites. Geochimica et Cosmochimica Acta, 91, 283305.CrossRefGoogle Scholar
Sciré, S., Ciliberto, E., Crisafulli, C., Scribano, V., Bellatreccia, F. and Della Ventura, G. (2011) Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos, 125, 956968.CrossRefGoogle Scholar
Serna, C., Ahlrichs, J.L. and Serratosa, J.M. (1975) Folding in sepiolite crystals. Clays and Clay Minerals, 23, 452457.Google Scholar
Sherman, M.A. (1970) Coated asbestos and method of making and using same. United States Patent no. 3519594A, Lexington, Mass, assignor to Amicon Corporation, Lexington, Mass, a corporation of Massachusetts No Drawing. Filed Nov. 9, 1967, Ser. No. 681,933. Available at http://www.google.-com/patents/US3519594.Google Scholar
Silverstein, R.M., Webster, F.X. and Kiemle, D.J. (2005) Spectroscopic Identification of Organic Compounds, 7th edition. John Wiley and Sons, New Jersey, USA.Google Scholar
Solebello, L. (2009) Fibrous sepiolite use as an asbestos substitute: analytical basics. Microscopy Today, 15, 1819.CrossRefGoogle Scholar
Suárez, M. and García-Romero, E. (2011) Advances in the Crystal Chemistry of Sepiolite and Palygorskite. Pp. 33–65 in: Developments in Palygorskite– Sepiolite Research, A New Outlook on these Nanomaterials (E. Galán and A. Singer, editors). Elsevier B.V., Amsterdam.Google Scholar
Suárez, M. and García-Romero, E. (2012) Variability of the surface properties of sepiolite. Applied Clay Science, 67–68, 7282.CrossRefGoogle Scholar
Taran, Y.A., Kliger, G.A. and Sevastianov, V.S. (2007) Carbon isotope effects in the open system Fischer– Tropsch synthesis. Geochimica et Cosmochimica Acta, 71, 44744487.CrossRefGoogle Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye–Scherrer synchrotron data f rom Al2O3 . Journal of Applied Crystallography, 20, 7983.CrossRefGoogle Scholar
Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210213.CrossRefGoogle Scholar
Trauth, N. (1977) Argiles puaporitiques dans les sedimentation carbonatée et epicontinental tertiaire, Bassin de Paris, Mormoiron et Salenelles (France), Ibel Ghassoul (Maroc). Science Géologiques. Memoire, 49. UniversitéLouis Pasteur de Strasbourg, Institute de Géologie, Strasbourg, France.Google Scholar
Tumiati, S., Martin, S. and Godard, G. (2010) Hydrothermal origin of manganese in the highpressure ophiolite metasediments of Praborna ore deposit (Aosta Valley, western Alps). European Journal of Mineralogy, 22, 577594.CrossRefGoogle Scholar
Ugliengo, P., Viterbo, D. and Chiari, G. (1993) MOLDRAW: molecular graphics on a personal computer. Kristallographie, 207, 9.Google Scholar
Velde, B. (editor) (1985) Clay Minerals. A Physico-Chemical Explanation of their Occurrence. Developments in Sedimentology, 40, Elsevier, New York.Google Scholar
Weaver, C.E. (1984) Origin and geologic implications of the palygorskite deposits of SE United States. Pp. 39–58 in: Palygorskite–Sepiolite: Occurrences, Genesis and Uses. (A. Singer and E. Galàn, editors). Developments in Sedimentology, 37, Elsevier B.V., Amsterdam.Google Scholar
Weir, M.R., Kuang, W., Facey, G.A. and Detellier, C. (2002) Solid-state nuclear magnetic resonance study of sepiolite and partially dehydrated sepiolite. Clays and Clay Minerals, 50, 240247.Google Scholar