Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T14:36:21.722Z Has data issue: false hasContentIssue false

Apatite with lamellae of sulfide and other phases in ultrahigh-pressure eclogites from Nové Dvory, Moldanubian Zone, Czech Republic

Published online by Cambridge University Press:  26 July 2018

Shah Wali Faryad*
Affiliation:
Institute of Petrology and Structural Geology, Charles University, Prague, Albertov 12843, Czech Republic
Radim Jedlicka
Affiliation:
Institute of Petrology and Structural Geology, Charles University, Prague, Albertov 12843, Czech Republic
Maria Perraki
Affiliation:
Department of Geo-Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9 Heroon Politechniou St, GR-15773, Zografou (Athens), Greece
*
*Author for correspondence: Shah Wali Faryad, Email: [email protected]

Abstract

Exsolution lamellae of baryte, Fe sulfides, Cu sulfides and Fe oxides were observed in apatite enclosed in garnet and omphacite and their intergranular spaces in ultrahigh-pressure eclogite in the Moldanubian Zone, Czech Republic. Micro-textural relations and compositional mapping of the apatite indicates a close relationship between the density of the exsolution lamellae and compositional domains that are rich in sulfur and iron. No relation between compositional domains and fluorine or chlorine content or any evidence of apatite metasomatisation was observed. On the basis of cathodoluminescence images, the compositional domains reflect sector zoning in apatite crystals by preferential uptake of elements due to differences in surface charge and morphology on the growth plane. It is concluded that the lamellae are products of exsolution in a closed system resulting from temperature decrease during metamorphism.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Makoto Arima

References

Ackerman, L., Jelínek, E., Medaris, G., Ježek, J., Siebel, W. and Strnad, L. (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: Insights into subduction-related melt-rock reactions. Chemical Geology, 259, 152167.Google Scholar
Broska, I., Krogh Ravna, E.J., Vojtko, P., Janák, M., Konečný, P., Pentrák, M., Bačík, P., Luptáková, J. and Kullerud, K. (2014) Oriented inclusions in apatite in a post-UHP fluid-mediated regime (Tromsø Nappe, Norway). European Journal of Mineralogy, 26, 623634.Google Scholar
Cháb, J., Stráník, Z. and Eliáš, M. (2007) Geologická mapa České republiky 1:500.000. Česká geologická služba.Google Scholar
Chen, J., Zeng, L.S., Chen, F.Y. and Liang, F.H. (2006) Primary study of exsolution in apatite from the Qinglongshan, Jiangsu Province. Acta Petrologica Sinica, 22, 19211926 [in Chinese].Google Scholar
Cherniak, D.J. (2000) Rare earth element diffusion in apatite. Geochimica et Cosmochimica Acta, 64, 38713885.Google Scholar
Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H.J. and Green, H.W. (2002) Silica precipitates in omphacite from eclogite at Alpe Arami, Switzerland: evidence of deep subduction. Journal of Metamorphic Geology, 20, 481492.Google Scholar
Ellis, D.J. and Green, D.H. (1979). An experimental study of the effect of Ca upon garnet-clinopyroxene Fe--Mg exchange equilibria. Contributions to Mineralogy and Petrololgy, 71, 1322.Google Scholar
Faryad, S.W. and Fišera, M. (2015) Olivine-bearing symplectites in fractured garnet from eclogite, Moldanubian Zone (Bohemian Massif) – a short-lived, granulite facies event. Journal of Metamorphic Geology, 33, 597612.Google Scholar
Faryad, S.W. and Kachlík, V. (2013) New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif. Journal of Metamorphic Geology, 31, 6382.Google Scholar
Faryad, S.W., Dolejš, D. and Machek, M. (2009) Garnet exsolution in pyroxene from clinopyroxenites in the Moldanubian zone: constraining the early pre-convergence history of ultramafic rocks in the Variscan orogen. Journal of Metamorphic Geology, 27, 655671.Google Scholar
Faryad, S.W., Jedlicka, R. and Ettinger, K. (2013 a) Subduction of lithospheric upper mantle recorded by solid phase inclusions and compositional zoning in garnet: example from the Bohemian Massif. Gondwana Research, 23, 944955.Google Scholar
Faryad, S.W., Jedlicka, R. and Collett, S. (2013 b) Eclogite facies rocks of the Monotonous unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif). Lithos, 179, 353363.Google Scholar
Faryad, S.W., Kachlík, V., Sláma, J. and Hoinkes, G. (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP-UHP rocks in the Moldanubian Zone (Bohemian Massif). Journal of Metamorphic Geology, 33, 295310.Google Scholar
Faryad, S.W., Jedlicka, R., Hauzenberger, C. and Racek, M. (2018) High-pressure crystallization vs. recrystallization origin of garnet pyroxenite-eclogite within subduction related lithologies. Mineralogy and Petrology, 112, 603616.Google Scholar
Fleet, M.E. and Pan, Y.M. (1997) Site preference of rare earth elements in fluorapatite: binary (LREE + HREE)-substituted crystals. American Mineralogist, 82, 870877.Google Scholar
Gasparik, T. (2003) Phase Diagrams for Geoscientists. An Atlas of the Earth's Interior. Springer, 462 pp.Google Scholar
Gottesmann, B. and Wirth, R. (1997) Pyrrhotite inclusions in dark pigmented apatite from granitic rocks. European Journal of Mineralogy, 9, 491500.Google Scholar
Harlov, D.E. (2015) Apatite: a fingerprint for metasomatic processes. Elements, 11, 171176.Google Scholar
Harlov, D.E., Förster, H.J. and Nijland, T.G. (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist, 87, 245261.Google Scholar
Hughes, J.M. and Rakovan, J.F. (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements, 11, 165170.Google Scholar
Jedlicka, R., Faryad, S.W. and Hauzenberger, C. (2015) Prograde metamorphic history of UHP granulites from the Moldanubian Zone (Bohemian Massif) revealed by major element and Y + REE zoning in garnets. Journal of Petrology, 56, 20692088.Google Scholar
Katayama, I., Patkinson, C.D., Okamoto, K., Nakajima, Y. and Maruyama, S. (2000) Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan. American Mineralogist, 85, 13681374.Google Scholar
Korzhinsky, M.A. (1981) Apatite solid solutions as indicators of the fugacity of HCl and HF in hydrothermal fluids. Geochemistry International, 3, 4560.Google Scholar
Krneta, S., Ciobanu, C.L., Cook, N.J., Ehrig, K. and Kontonikas-Charos, A. (2016) Apatite at Olympic Dam, South Australia: A petrogenetic tool. Lithos, 262, 470485.Google Scholar
Liou, J.G., Zhang, R.V., Ernst, W.G., Rumble, D.I. and Maruyama, S. (1998) High-pressure minerals from deeply subducted metamorphic rocks. Pp. 3396 in: Ultrahigh Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (Hemley, R.J., editor). Reviews in Mineralogy, 37. Mineralogical Society of America, Washington, DC.Google Scholar
Liu, L., Yang, J., Zhang, J., Chen, D., Wang, C. and Yang, W. (2009) Exsolution microstructures in ultrahigh-pressure rocks: Progress, controversies and challenges. Chinese Science Bulletin, 54, 1983.Google Scholar
Medaris, L.G., Wang, H.F., Mísař, Z. and Jelínek, E. (1990) Thermobarometry, diffusion modelling and cooling rates of crustal garnet peridotites: two examples from the Moldanubian zone of the Bohemian Massif. Lithos, 25, 189202.Google Scholar
Medaris, L.G., Beard, B.L. and Jelínek, E. (2006) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: a geochemical review, new P–T determinations, and tectonic interpretation. International Geology Review, 48, 765777.Google Scholar
Nakamura, D., Svojtka, M. and Naemura, K. (2004) Very high-pressure (>4 GPa) eclogite associated with the Moldanubian zone garnet peridotite (Nové Dvory, Czech Republic). Journal of Metamorphic Geology, 22, 593603.4+GPa)+eclogite+associated+with+the+Moldanubian+zone+garnet+peridotite+(Nové+Dvory,+Czech+Republic).+Journal+of+Metamorphic+Geology,+22,+593–603.>Google Scholar
Pan, Y. and Fleet, M.E. (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Pp. 13–49 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Parsons, I. and Brown, W.L. (1991) Mechanisms and kinetics of exsolution-structural control of diffusion and phase behavior in alkali feldspars. Pp. 304344 in: Diffusion, Atomic Ordering, and Mass Transport. Advances in Physical Geochemistry (Ganguly, J., editor). Selected Topics in Geochemistry 8. Springer, New York, NY.Google Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179Google Scholar
Perraki, M. and Faryad, S.W. (2014) First finding of microdiamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Variscan Orogeny in the Bohemian Massif. Lithos, 202–203, 157–166.Google Scholar
Prowatke, S. and Klemme, S. (2006) Trace element partitioning between apatite and silicate melts. Geochimica et Cosmochimica Acta, 70, 45134527.Google Scholar
Rakovan, J. (2002) Growth and surface properties of apatite. Pp. 51–86 in: Phosphates (Kohn, M.L., Rakovan, J. and Hughes, J.M., editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Rakovan, J. and Reeder, R.J. (1996) Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth. Geochimica et Cosmochimica Acta, 60, 44354445.Google Scholar
Sallet, R. (2000) Fluorine as a tool in the petrogenesis of quartz-bearing magmatic associations: applications of an improved F-OH biotite-apatite thermometer grid. Lithos, 50, 241253.Google Scholar
Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopásek, J., Lexa, O. and Štípská, P. (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. American Journal of Science, 305, 407448.Google Scholar
Smith, M.P. and Yardley, B.W.D. (1999) Fluid evolution during metamorphism of the Otago Schist, New Zealand: (II), Influence of detrital apatite on fluid salinity. Journal of Metamorphic Geology, 17, 187193.Google Scholar
Spear, F.S. and Pyle, J.M. (2002) Apatite, monazite, and xenotime in metamorphic rocks. Pp. 293–336 in: Phosphates (M.L. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Sun, X.M., Tang, Q., Sun, W.D., Xu, L., Zhai, W., Liang, J.L., Liang, Y.H., Shen, K., Zhang, Z.M., Zhou, B. and Wang, F.Y. (2007) Monazite, iron oxide and baryte exsolutins in apatite aggregates from CCSD drillhole eclogites and their geological implications. Geochimica et Cosmochimica Acta, 71, 28962905.Google Scholar
Svojtka, M., Ackerman, L., Medaris, L.G., Hegner, E., Valley, J.W., Hirajima, T., Jelinek, E. and Hrstka, T. (2016) Petrological, geochemical and Sr-Nd-O isotopic constraints on the origin of garnet and spinel pyroxenites from the Moldanubian Zone of the Bohemian Massif. Journal of Petrology, 57, 897920.Google Scholar
Van Hinsberg, V.J., Schumacher, J.C., Kearns, S., Mason, P.R.D. and Franz, G. (2006) Hourglass sector zonation in metamorphic tourmaline and resultant major and trace-element fractionation. American Mineralogist, 91, 717728.Google Scholar
Watson, E.B. and Green, T.H. (1981) Apatite liquid partition-coefficients for the rare-earth elements and strontium. Earth and Planetary Science Letters, 56, 405421.Google Scholar
Watson, E.B. and Harrison, T.M. (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems – a summary and prospectus of experimental approaches. Physics of the Earth and Planetary Interiors, 35, 1930.Google Scholar
Yardley, B.W.D. (1985) Apatite composition and fugacities of HF and HCl in metamorphic fluids. Mineralogical Magazine, 49, 7779.Google Scholar
Yund, R.A. and McCallister, R.H. 1970. Kinetics and mechanisms of exsolution. Chemical Geology, 6, 530.Google Scholar
Zeng, L., Chen, J., Liang, F.H. and Xu, Z.Q. (2006) Widespread occurrences of apatites with high density sulfide mineral solid exsolutions in the Sulu eclogites. Geochimica et Cosmochimica Acta, 70, A733.Google Scholar
Zhang, L.F., Song, S.G., Liou, J.G., Ai, Y.L. and Li, X.P. (2005) Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist, 90, 181186.Google Scholar
Zhang, R.Y. and Liou, J.G. (1999) Exsolution lamellae in minerals from ultrahigh-pressure rocks. International Geology Review, 41, 981993.Google Scholar
Zhao, S., Nee, P., Green, H.W. and Dobrzhinetskaya, L. (2011) Ca-Eskola component in clinopyroxene: Experimental studies at high pressures and high temperatures in multianvil apparatus. Earth and Planetary Science Letters, 307, 517524.Google Scholar