Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T16:06:14.044Z Has data issue: false hasContentIssue false

An experimental study of Sr, Ba and Rb partitioning between alkali feldspar and silicate liquid in the system nepheline–kalsilite–quartz at 0.1 GPa P(H2O): a revisitation and reassessment

Published online by Cambridge University Press:  05 July 2018

C. M. B. Henderson*
Affiliation:
School of Earth, Atmospheric and Environmental Sciences (SEAES), University of Manchester, Manchester M13 9PL, UK Accelerator Science and Technology Centre (ASTeC), STFC Laboratory, Daresbury WA4 4AD, UK
W. J. Pierozynski
Affiliation:
School of Earth, Atmospheric and Environmental Sciences (SEAES), University of Manchester, Manchester M13 9PL, UK
*

Abstract

The partitioning of Sr, Ba and Rb between alkali feldspar and melt has been determined at 0.1 GPa water vapour pressure, mainly on one Na-rich series and one K-rich series within the system nepheline-kalsilite-quartz. Experiments were also carried out with small amounts of the anorthite molecule or peralkaline components (Na, K metasilicates). The compositions of the alkali feldspars and coexisting quenched glasses were determined by electron microprobe analysis. Except for some peralkaline compositions, the crystal/liquid partition coefficients for Sr and Ba are always >1; the crystal/liquid partition coefficient for Rb is always <1. For sodic alkali feldspars DSr > DBa and for potassic feldspars DSr < DBa. Partition coefficients for Sr and Ba increase: (1) with decreasing temperature; (2) with increasing Or content of feldspar; (3) with increasing silica-undersaturation of the melt; (4) with decreasing peralkalinity. The variation in the value of DRb is less clear, but it is higher for K-rich feldspars. Multiple linear regression equations are fitted to correlate ln(D) with independent compositional and physical variables. Where rock/groundmass major-element data are available for felsic natural rocks, equations are recommended for obtaining reliable alkali feldspar partition coefficients for modelling fractional crystallization processes. The structural properties of silicate melts and crystal chemical relations are used to rationalize trends in partition coefficients.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, N.L., Blundy, J.D., Purton, J.A., Lavrentiev, M.Yu. and Wood, B.J. (2001) Trace element incorporation in minerals and melts. EMU Notes in Mineralogy, 3, 251302.Google Scholar
Angel, R.J. (1994) Feldspars at high pressure. Pp. 271312. in: Feldspars and their reactions (Parsons, I., editor). Kluwer Academic Publishers, The Netherlands.Google Scholar
Angel, R.J., Hazen, R.M., McCormick, T.C., Prewitt, C.T. and Smyth, J.R. (1988) Comparative compressibility of end-member feldspars. Physics and Chemistry of Minerals, 15, 313318.CrossRefGoogle Scholar
Avanzinelli, R., Bindi, L., Menchetti, S. and Conticelli, S. (2004) Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study. Lithos, 73, 4169.CrossRefGoogle Scholar
Bailey, D.K. and Schairer, J.F. (1964) Feldspar-liquid equilibria in peralkaline liquids-the orthoclase effect. American Journal of Science, 262, 11981206.CrossRefGoogle Scholar
Bea, F., Pereira, M.D., Corretgé, L.G. and Fershtater, G.B. (1994) Differentiation of strongly peraluminous, perphosphorus granites: the Pedrobernardo pluton, central Spain. Geochimica et Cosmochimica Acta, 58, 26092627.CrossRefGoogle Scholar
Beard, J.S., Abitz, R.J. and Lofgren, G.E. (1993) Experimental melting of crustal xenoliths from Kilbourne Hole, New Mexico and implications for the contamination and genesis of magmas. Contributions to Mineralogy and Petrology, 115, 88102.CrossRefGoogle Scholar
Beattie, P., Drake, M., Jones, J., Leeman, W., Longhi, J., McKay, G., Nielsen, R., Palme, H., Sha, D., Takahashi, E. and Watson, B. (1993) Terminology for trace element partitioning. Geochimica et Cosmochimica Acta, 57, 16051606.CrossRefGoogle Scholar
Bédard, J.H. (2003) Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta, 70, 37173742.CrossRefGoogle Scholar
Berlin, R. and Henderson, C.M.B. (1969) The distribution of Sr and Ba between the alkali feldspar, plagioclase and groundmass phases of porphyritic trachytes and phonolites. Geochimica et Cosmochimica Acta, 33, 247255.CrossRefGoogle Scholar
Bindeman, I.N., Davis, A.M. and Drake, M.J. (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochimica et Cosmochimica Acta, 62, 11751193.CrossRefGoogle Scholar
Binsted, N., Greaves, G.N. and Henderson, C.M.B. (1985) An EXAFS study of glassy and crystalline phases of composition CaAl2Si2O8 (anorthite) and CaMgSi2O6 (diopside). Contributions to Mineralogy and Petrology, 89, 103109.CrossRefGoogle Scholar
Blundy, J.D. and Wood, B.J. (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochimica et Cosmochimica Acta, 55, 193209.CrossRefGoogle Scholar
Blundy, J. and Wood, B.J. (1994) Prediction of crystalmelt partition coefficients from elastic moduli. Nature, 372, 452454.CrossRefGoogle Scholar
Blundy, J. and Wood, B.J. (2003) Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210, 383397.CrossRefGoogle Scholar
Borchert, M., Wilke, M., Schmidt, C. and Rickers, K. (2010) Rb and Sr partitioning between haplogranitic melts and aqueous solutions. Geochimica et Cosmochimica Acta, 74, 10571076.CrossRefGoogle Scholar
Bottinga, Y. and Weill, D.F. (1972) The viscosity of magmatic silicate liquids: a model for calculation. American Journal of Science, 272, 438475.CrossRefGoogle Scholar
Bowen, N.L. (1937) Recent high-temperature research on silicates and its significance in igneous geology. American Journal of Science, 33, 121.CrossRefGoogle Scholar
Brandeis, G., Jaupart, C. and Allègre, C.J. (1984) Nucleation, crystal growth, and the thermal regime of cooling magmas. Journal of Geophysical Research, 89, 1016110177.CrossRefGoogle Scholar
Brice, J.C. (1975) Some thermodynamic aspects of the growth of strained crystals. Journal of Crystal Growth, 28, 249253.CrossRefGoogle Scholar
Cabane, H., Laporte, D. and Provost, A. (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contributions to Mineralogy and Petrology, 150, 3753.CrossRefGoogle Scholar
Carmichael, I.S.E. (1962) Pantelleritic liquids and their phenocrysts. Mineralogical Magazine, 33, 86113.CrossRefGoogle Scholar
Carmichael, I.S.E. (1964) Natural liquids and the phonolitic minimum. Geological Journal, 4, 5560.CrossRefGoogle Scholar
Carmichael, I.S.E. (1965) Trachytes and their feldspar phenocrysts. Mineralogical Magazine, 34, 107125.CrossRefGoogle Scholar
Carmichael, I.S.E. and MacKenzie, W.S. (1963) Feldspar-liquid equilibria in pantellerites: an experimental study. American Journal of Science, 261, 382396.CrossRefGoogle Scholar
Carroll, M.R. and Blank, J.G. (1997) The solubility of H2O in phonolitic melts. American Mineralogist, 82, 549556.CrossRefGoogle Scholar
Christensen, N.I. (1996) Poisson’s ratio and crustal seismology. Journal of Geophysical Research, B101, 31393156.CrossRefGoogle Scholar
Cooper, J.P. (1972) Geochemistry of Tarosero Volcano, Northern Tanzania. Unpublished MSc thesis, University of Manchester, Manchester, UK.Google Scholar
Cormier, L., Gaskell, P.H. and Creux, S. (1999) Comparison of the low-Q features in diffraction data for silicate glasses and crystals containing Sr and Ba. Journal of Non-Crystalline Solids, 248, 8491.CrossRefGoogle Scholar
Couch, S. (2003) Experimental investigation of crystallization kinetics in the haplogranite system. American Mineralogist, 88, 14711485.CrossRefGoogle Scholar
Creux, S., Bouchet-Fabre, B. and Gaskell, P.H. (1995) Anomalous wide angle X-ray scattering study of strontium silicate and aluminosilicate glasses. Journal of Non-Crystalline Solids, 192193.Google Scholar
Dawson, J.B. and Hinton, R.W. (2008) The composition of anorthoclase and nepheline in Mount Kenya phonolite and Kilimanjaro trachyte, and crystal-glass part i t ioning of elements. The Canadian Mineralogist, 46, 14551464.CrossRefGoogle Scholar
de Pieri, R. and Quareni, S. (1978) Partition coefficients of alkali and alkaline-earth elements between alkali feldspar phenocrysts and their lava matrix. Mineralogical Magazine, 42, 6367.CrossRefGoogle Scholar
Drake, M.J. and Holloway, J.R. (1978) “Henry’s Law” behaviour of Sm in a natural plagioclase/melt system: importance of experimental procedure. Geochimica et Cosmochimica Acta, 42, 679683.CrossRefGoogle Scholar
Drake, M.J. and Weill, D.F. (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochimica et Cosmochimica Acta, 39, 689712.CrossRefGoogle Scholar
Drexler, J.W., Bornhost, T.J. and Noble, D.C. (1983) Trace-element sanidine/glass distribution coefficients for peralkaline silicic rocks and their implications to peralkaline petrogenesis. Lithos, 16, 265271.CrossRefGoogle Scholar
Ewart, A. and Griffin, W.L. (1994) Application of proton-microprobe data to trace element partitioning in volcanic rocks. Chemical Geology, 117, 251284.CrossRefGoogle Scholar
Fenn, P.M. (1977) The nucleation and growth of alkali feldspars from hydrous melts. The Canadian Mineralogist, 15, 135161.Google Scholar
Fowler, M.B., Kocks, H., Darbyshire, D.P.F. and Greenwood, P.B. (2008) Petrogenesis of high Ba-Sr plutons from the Northern Highland Terrane of the British Caledonian Province. Lithos, 105, 129148.CrossRefGoogle Scholar
Giordano, D., Russell, J.K. and Dingwell, D.B. (2008) Viscosity of magmatic liquids: a model. Earth and Planetary Science Letters, 271, 123134.CrossRefGoogle Scholar
Ginibre, C., Wörner, G. and Kronz, A. (2004) Structure and dynamics of the Laacher See magma chamber (Eifel, Germany) from major and trace element zoning in sanidine: a cathodoluminescence and electron microprobe study. Journal of Petrology, 45, 21972223.CrossRefGoogle Scholar
Green, T.H. (1994) Experimental studies of traceelement partitioning applicable to igneous petrogenesis-Sedona 16 years later. Chemical Geology, 117, 136.CrossRefGoogle Scholar
Guo, J. and Green, T.H. (1989) Barium partitioning between alkali feldspar and silicate liquid at high temperature and pressure. Contributions to Mineralogy and Petrology, 102, 328335.CrossRefGoogle Scholar
Hamilton, D.L. and Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832838.CrossRefGoogle Scholar
Hamilton, D.L and MacKenzie, W.S. (1965) Phaseequilibria studies in the system NaAlSiO4 (nepheline) – KAlSiO4 (kalsilite)-SiO2-H2O. Mineralogical Magazine, 34, 214231.CrossRefGoogle Scholar
Hammer, J.E. and Rutherford, M.J. (2002) An experimental study of the kinetics of decompressioninduced crystallization in silicic melt. Journal of Geophysical Research, 107, 148227.CrossRefGoogle Scholar
Henderson, C.M.B. and Ezepue, M.J. (1989) Petrogenesis of the dyke suite from the Marangudzi alkaline ring complex, Zimbabwe. Pp. 83115. in Alkaline Rocks (Leelanandam, C., editor). Geological Society of India, Memoirs, 15. Geological Society of India, Bangalore, India.Google Scholar
Holz, F., Pichavant, M., Barbey, P. and Johannes, W. (1992) The effect of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. American Mineralogist, 77, 12231241.Google Scholar
Holtz, F., Behrens, H., Dingwell, D.B. and Johannes, W. (1995) H2O solubility in haplogranite melts: compositional, pressure, and temperature dependence. American Mineralogist, 80, 94108.CrossRefGoogle Scholar
Icenhower, J. and London, D. (1996) Experimental partitioning of Rb, Cs, Sr and Ba between alkali feldspar and peraluminous melt. American Mineralogist, 81, 719734.CrossRefGoogle Scholar
Irving, A.J. (1978) A review of experimental studies of crystal/liquid trace element partitioning. Geochimica et Comochimica Acta, 42, 743770.CrossRefGoogle Scholar
James, R.S. and Hamilton, D.L. (1969) Phase relations in the system NaAlSi3O8–KAlSi3O8–CaAl2Si2O8– SiO2 at 1 kilobar water vapour pressure. Contributions to Mineralogy and Petrology, 21, 111141.CrossRefGoogle Scholar
Kohn, S.C., Charnock, J.M., Henderson, C.M.B. and Greaves, G.N. (1990) The structural environments of trace elements in dry and hydrous silicate glasses; a manganese and strontium K-edge X-ray absorption spectroscopic study. Contributions to Mineralogy and Petrology, 105, 359368.CrossRefGoogle Scholar
Lagache, M. (1968) Etude expé rimentale de la répartition des éléments-traces entre la leucite, l’orthose et des solutions hydrothermale Les rubidium à 600ºC. Comptes Rendu Acadamie Sciences (Paris), Séries D, 267, 141144.Google Scholar
Larsen, L.M. (1979) Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar igneous province, south Greenland. Lithos, 12, 303315.CrossRefGoogle Scholar
Leeman, W.P. and Phelps, D.W. (1981) Partitioning of rare earths and other trace elements between sanidine and coexisting volcanic glass. Journal of Geophysical Research, 86, 1019310199.CrossRefGoogle Scholar
Lofgren, G.E. (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. American Journal of Science, 274, 243273.CrossRefGoogle Scholar
Long, P.E. (1978) Experimental determination of partition coefficients for Rb, Sr and Ba between alkali feldspar and silicate liquid. Geochimica et Cosmochimica Acta, 42, 833846.CrossRefGoogle Scholar
López-Moro, F.-J. and López-Plaza, M. (2004) Monzonitic series from the Variscan Tormes Dome (Central Iberian Zone): petrogenetic evolution from monzogabbro to granite magmas. Lithos, 72, 1944.CrossRefGoogle Scholar
Mahood, G.A. and Stimac, J.A. (1990) Trace-element partitioning in pantellerites and trachytes. Geochimica et Cosmochimica Acta, 54, 22572276.CrossRefGoogle Scholar
Mason, R.A., Smith, J.V., Dawson, J.B. and Treves, S.B. (1982) A reconnaissance of trace elements in anorthoclase megacrysts. Mineralogical Magazine, 46, 711.CrossRefGoogle Scholar
Matteo, V.D., Carroll, M.R., Behrens, H., Vetere, F. and Brooker, R.A. (2004) Water solubility in trachytic melts. Chemical Geology, 213, 187196.CrossRefGoogle Scholar
Morgan, G.B. VI and London, D. (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. American Mineralogist, 81, 11761185.CrossRefGoogle Scholar
Morgan, G.B. VI and London, D. (2003) Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa. Contributions to Mineralogy and Petrology, 144, 722734.CrossRefGoogle Scholar
Mysen, B.O. (1987) Magmatic silicate melts: Relations between bulk composition, structure and properties. Pp. 375399. in: Magmatic Processes : Physicochemical Principles (Mysen, B.O., editor). Geochemical Society Special Paper, 1. Geochemical Society, University Park, Pennsylvania, USA .Google Scholar
Mysen, B.O. (1992) Peralkalinity, Al = Si substitution, and solubility mechanisms of H2O in aluminosilicate melts. Journal of Petrology, 33, 347375.CrossRefGoogle Scholar
Mysen, B.O. (2004) Element partitioning between minerals and melt, melt composition, and melt structure. Chemical Geology, 213, 116.CrossRefGoogle Scholar
Mysen, B.O. and Virgo, D. (1986) Volatiles in silicate melts at high pressure and temperature. 2. Water in melts along the join NaAlO2-SiO2 and a comparison of solubility mechanisms of water and fluorine. Chemical Geology, 57, 333358.CrossRefGoogle Scholar
Nash, W.P. and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta, 49, 23092322.CrossRefGoogle Scholar
Neuville, D.R., Cormier, L. and Massiot, D. (2004a) Al environment in tectosilicate and peraluminous glasses: A 27Al MS NMR, Raman, and XANES investigation. Geochimica et Cosmochimica Acta, 68, 50715079.CrossRefGoogle Scholar
Neuville, D.R., Cormier, L., Flank, A.M., Briois, V. and Massiot, D. (2004b) Al speciation and Ca environment in calcium aluminosilicate glasses and crystals by Al and Ca K-edge X-ray absorption spectroscopy. Chemical Geology, 213, 153163.CrossRefGoogle Scholar
Neuville, D.R., Cormier, L., de Ligny, D., Roux, J., Flank, A.-M. and Lagarde, P. (2008) Environments around Al, Si, and Ca in aluminate and aluminosilicate melts by X-ray absorption spectroscopy at high temperatures. American Mineralogist, 93, 228234.CrossRefGoogle Scholar
Noble, D.C. and Hedge, C.E. (1970) Distribution of rubidium between sodic sanidine and natural silicic liquid. Contributions to Mineralogy and Petrology, 29, 234241.CrossRefGoogle Scholar
Norris, G. and MacKenzie, W.S. (1976) Phase relations in the system NaAlSiO4–KAlSiO4–CaAl2Si2O8– SiO2 at P(H2O) = 1 kbar. Progress in Experimental Petrology, Third Progress Report, NERC D6, 7981.Google Scholar
Oestrike, R., Yang, W.-H., Kirkpatrick, R.J., Hervig, R.L., Navrotsky, A. and Montez, B. (1987) High resolution 23Na, 27Al, and 29Si NMR spectroscopy of framework aluminosilcate glasses. Geochimica et Cosmochimica Acta, 51, 21992209.CrossRefGoogle Scholar
Orlando, A., D’Orazio, M., Armienti, P. and Borrini, D. (2008) Experimental determination of plagioclase and clinopyroxene growth rates in an anhydrous trachybasalt from Mt Etna (Italy). European Journal of Mineralogy, 20, 653664.CrossRefGoogle Scholar
Philpotts, J.A. and Schnetzler, C.C. (1970) Phenocrystmatrix partition coefficients for K, Rb, Sr, and Ba with applications to anorthosite and basalt genesis. Geochimica et Cosmochimica Acta, 34, 307322.CrossRefGoogle Scholar
Pierozynski, W.J. (1977) The effects of varying bulk composition of Sr, Ba and Rb between alkali feldspar and coexisting silicate liquid. Proceedings of the International Conference on Experimental Trace Element Geochemistry, 1977, 9899.Google Scholar
Pierozynski, W.J. (1979) Partitioning of Sr, Ba and Rb between alkali feldspar and silicate liquid. Unpublished PhD thesis, University of Manchester, Manchester, UK. Pierozynski, W.J. and Henderson, C.M.B. (1978) Distribution of Sr, Ba and Rb between alkali feldspar and silicate melt. Progress in Experimental Petrology (Natural Environment Research Council, UK), 4, 4046.Google Scholar
Ponader, C.W. and Brown, G.E. Jr (1989) Rare-earth elements in silicate glass/melt systems: effects of composition on the coordination environments of La, Gd and Yb. Geochimica et Cosmochimica Acta, 53, 28932903.CrossRefGoogle Scholar
Prowatke, S. and Klemme, S. (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochimica et Cosmochimica Acta, 69, 695709.CrossRefGoogle Scholar
Ren, M. (2004) Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magmas. American Mineralogist, 89, 12901303.CrossRefGoogle Scholar
Rucklidge, J. and Gasparini, E.L. (1969) Empadr VII. Department of Geology, University of Toronto, Toronto, Canada. Schmidt, B.C. and Behrens, H. (2008) Water solubility in phonolite melts: influence of melt composition and temperature. Chemical Geology, 256, 259268.Google Scholar
Seifert, F.A., Mysen, B.O. and Virgo, D. (1982) Threedimensional network melt structure in the systems SiO2-NaAlO2, SiO2-CaAl2O4, SiO2-MgAl2O4. American Mineralogist, 67, 696718.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Smith, J.V. (1974) Feldspar Minerals, Volume 2. Springer Verlag, New York, 690 pp. Smith, J.V. and Ribbe, P.H. (1966) X-ray emission microanalysis of rock-forming mineral III. Alkali feldspars. Journal of Geology, 74, 197216.CrossRefGoogle Scholar
Smith, R.K., Gray, W., Gibbs, T. and Gallegos, M.A. (2010) Petrogenesis of Mesoproterozoic granitic plutons, eastern Llano Uplift, central Texas, USA. Lithos, 118, 238254.CrossRefGoogle Scholar
Spera, F.J., Bohrson, W.A., Till, C.B. and Ghiorso, M.S. (2007) Partitioning of trace elements among coexisting crystals, melt, and supercritical fluid during isobaric crystallization and melting. American Mineralogist, 92, 18811898.CrossRefGoogle Scholar
Stebbins, J.F., Dubinsky, E.V., Kanehashi, K. and Kelsey, K.E. (2008) Temperature effects on nonbridging oxygen and aluminum coordination number in calcium aluminosilicate glasses and melts. Geochimica et Cosmochimica Acta, 72, 910925.CrossRefGoogle Scholar
Stein, D.J. and Spera, F.J. (1995) Molecular dynamics simulations of liquids and glasses in the system NaAlSiO4-SiO2: methodology and melt structures. American Mineralogist, 80, 417431.CrossRefGoogle Scholar
Stix, J. and Gorton, M.P. (1990) Variations in trace element partition coefficients in sanidine in the Cerro Toledo Rhyolite, Jemez Mountains, New Mexico: effects of composition, temperature, and volatiles. Geochimica et Cosmochimica Acta, 54, 26972708.CrossRefGoogle Scholar
Swanson, S.E. (1977) Relation of nucleation and crystalgrowth rate to the development of granitic textures. American Mineralogist, 62, 966978.Google Scholar
Taylor, M. and Brown, G.E. Jr (1979a) Structure of mineral glasses-The, I. feldspar glasses NaAlSi3O8, KAlSi 3O8, CaAl2 Si2O8 . Geochimica et Cosmochimica Acta, 43, 6175.CrossRefGoogle Scholar
Taylor, M. and Brown, G.E. Jr (1979b) Structure of mineral glasses-II. The SiO2-NaAlSiO4 join. Geochimica et Cosmochimica Acta, 43, 14671473.CrossRefGoogle Scholar
Thompson, R.N. and MacKenzie, W.S. (1967) Feldspar-liquid equilibria in peralkaline acid liquids: an experimental study. American Journal of Science, 265, 714734.CrossRefGoogle Scholar
Toplis, M.J., Dingwell, D.B., Hess, K-U. and Lenci, T. (1997a) Viscosity, fragility, and configurational entropy of melts along the join NaAlSiO4-SiO2. American Mineralogist, 82, 979990.CrossRefGoogle Scholar
Toplis, M.J., Dingwell, D.B. and Lenci, T. (1997b) Peraluminous viscosity maxi main Na2O-Al2O3-SiO2 liquids: the role of triclusters in tectosilicate melts. Geochimica et Cosmochimica, 61, 26052612.CrossRefGoogle Scholar
Turnbull, D. (1948) Transient nucleation. Transactions of the American Institute of Mining and Metallurgical Engineers, 175, 774783.Google Scholar
Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2 Geological, O. Society of America, Memoir, 74, 153 pp.Google Scholar
White, J.C. (2003) Trace element partitioning between alkali feldspar and peralkaline quartz trachyte to rhyolite magma. Part II: empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rareearth elements. American Mineralogist, 88, 330337.CrossRefGoogle Scholar
White, J.C., Holt, G.S., Parker, D.F. and Ren, M. (2003) Trace element partitioning between alkali feldspar and peralkaline quartz trachyte to rhyolite magma. Part I: systematics of trace-element partitioning. American Mineralogist, 88, 316329.CrossRefGoogle Scholar
Whittaker, E.J.W. and Muntus, R. (1970) Ionic radii for use in geochemistry. Geochimica et Cosmochimica Acta, 34, 945956.CrossRefGoogle Scholar
Williams, D. (1968) Improved cold seal pressure vessels to operate to 1100ºC at 3 kbars. American Mineralogist, 53, 17651769.Google Scholar
Winkler, H.G.F. (1947) Kristalgross und abkuhlung. Heidleberger Beitrage Mineralogy und Petrologie, 1, 87104.Google Scholar
Wörner, G. and Schminke, H.-U. (1984) Mineralogical and chemical zonation of the Laacher See tephra sequence (East Eifel W. Germany). Journal of Petrology, 25, 805835.CrossRefGoogle Scholar
Wörner, G., Beusen, J.-M., Duchateau, N., Gijbels, R. and Schminke, H.-U. (1983) Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See volcano (Germany). Contributions to Mineralogy and Petrology, 84, 152173.Google Scholar
Zhao, J.-X., Shiraishi, K., Ellis, D.J. and Sheraton, J.W. (1995) Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta, 59, 13631382.CrossRefGoogle Scholar