Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:25:09.609Z Has data issue: false hasContentIssue false

Aleutite [Cu5O2](AsO4)(VO4)·(Cu0.50.5)Cl, a new complex salt-inclusion mineral with Cu2+ substructure derived from a Kagome-net

Published online by Cambridge University Press:  24 June 2019

Oleg I. Siidra*
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200Russia
Evgeny V. Nazarchuk
Affiliation:
Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Prospect, Bldg. 18, 117071Moscow, Russia
Yury S. Polekhovsky
Affiliation:
Department of Mineral Deposits, St. Petersburg State University, University Embankment 7/9, 199034St. Petersburg, Russia
*
*Author for correspondence: Oleg I. Siidra, Email: [email protected]

Abstract

Aleutite, ideally [Cu5O2](AsO4)(VO4)·(Cu0.50.5)Cl, was found in the Yadovitaya fumarole of the Second scoria cone of the Great Fissure Tolbachik eruption, Kamchatka Peninsula, Russia. Aleutite occurs as individual crystals in the masses of polycrystalline anhydrite. Aleutite is monoclinic, C2/m, a = 18.090(2) Å, b = 6.2284(6) Å, c = 8.2465(9) Å, β = 90.597(2)°, V = 929.1(2) Å3 and Z = 4 (from single-crystal X-ray diffraction data). The empirical formula calculated on the basis of (As + V+Mo + Fe3+) = 2 atoms per formula unit is Сu5.40Zn0.05Ca0.01As1.09V0.84Mo0.04Fe0.03K0.05Pb0.02Rb0.01Cs0.01O9.97Cl1.07. The crystal structure was solved by direct methods and refined to an agreement index R1 = 0.066. Aleutite has a new structure type. Aleutite is unique amongst natural and synthetic copper vanadates and arsenates, as it has As5+ and V5+ cations ordered over two tetrahedral sites. The topology of ${}_\infty ^1 [{\rm Cu_5O_2}]^{6 +} $ oxocentred bands in aleutite is novel and has not been described before in minerals and synthetic materials. The structural architecture of the ${}_\infty ^1 [{\rm Cu_5O_2}]^{6 +} $ band in aleutite can be derived from a kagome network and represents a one-dimensional slice from it. In addition, aleutite is an interesting and complex example of a natural salt-inclusion phase.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

Associate Editor: G. Diego Gatta

References

Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Botana, A.S., Zheng, H., Lapidus, S.H., Mitchell, J.F. and Norman, M.R. (2018) Averievite: A copper oxide kagome antiferromagnet. Physical Reviews, B98, 054421.Google Scholar
Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.Google Scholar
Fedotov, S.A. and Markhinin, Y.K. (editors) (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York.Google Scholar
Gopal, R. and Calvo, C. (1973) Crystal structure of α-Zn2V2O7. Canadian Journal of Chemistry, 51, 10041009.CrossRefGoogle Scholar
Huang, Q., Ulutagay, M., Michener, P.A. and Hwu, S.-J. (1999) Salt-templated open frameworks (CU-2): Novel phosphates and arsenates containing M 3(X 2O7)22– (M = Mn, Cu; X = P, As) micropores 5.3 Å and 12.7 Å in diameter. Journal of the American Chemical Society, 121, 1032310326.CrossRefGoogle Scholar
Huang, Q., Hwu, S.–J. and Mo, X. (2001) High-temperature synthesis of an open-framework compound, Na2Cs2Cu3(P2O7)2Cl2 (CU-4), by molten-salt methods. Angewandte Chemie International Edition, 40, 16901693.3.0.CO;2-E>CrossRefGoogle Scholar
Kovrugin, V.M., Colmont, M., Siidra, O.I., Mentré, O., Al-Shuray, A., Gurzhiy, V.V. and Krivovichev, S.V. (2015) Oxocentered Cu(II) lead selenite honeycomb lattices hosting Cu(I)Cl2 groups obtained by chemical vapor transport reactions. Chemical Communications, 51, 95639566.CrossRefGoogle ScholarPubMed
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle ScholarPubMed
Krivovichev, S.V., Filatov, S.K. and Vergasova, L.P. (2015) Refinement of the crystal structure of averievite Cu5O2(VO4)·nMClx (M = Cu, Cs, Rb, K). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 144, 101109.Google Scholar
Mekata, M. (2003) Kagome: The story of the basketweave lattice. Physics Today, 56, 1213.CrossRefGoogle Scholar
Majzlan, J., Drahota, P. and Filippi, M. (2014) Parageneses and crystal chemistry of arsenic minerals. Pp. 17184 in: Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (Bowell, R.J., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google ScholarPubMed
Mills, S.J., Kampf, A.R., Raudsepp, M. and Christy, A.G. (2009) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineralogical Magazine, 73, 837845.CrossRefGoogle Scholar
Mills, S.J., Nestola, F., Kahlenberg, V., Christy, A.G., Hejny, C. and Redhammer, G.J. (2013) What lurks in the Martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates: looking for jarosite on Mars: The low-temperature crystal structure of jarosite. American Mineralogy, 98, 19661971.CrossRefGoogle Scholar
Pekov, I.V., Zubkova, N.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Yu. S., Fadeeva, O.A. and Pushcharovsky, D.Yu. (2013) Yaroshevskite, Cu9O2(VO4)4Cl2, a new mineral from the Tolbachik volcano, Kamchatka, Russia. Mineralogical Magazine, 77, 107116.CrossRefGoogle Scholar
Pekov, I.V., Britvin, S.N., Yapaskurt, V.O., Krivovichev, S.V., Vigasina, M.F. and Sidorov, E.G. (2015) Vasilseverginite, IMA 2015–083. CNMNC Newsletter No. 28, December 2015, page 1864. Mineralogical Magazine, 79, 18591864.Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Armbruster, T., Filatov, S.K. and Pekov, I.V. (2007) The crystal structure of leningradite, PbCu3(VO4)2Cl2. The Canadian Mineralogist, 45, 445449.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie – Crystalline Materials, 223, 114126.CrossRefGoogle Scholar
Siidra, O.I., Kozin, M.S., Depmeier, W., Kayukov, R.A. and Kovrugin, V.M. (2018 a) Copper-lead selenite bromides: A new large family of compounds partly having Cu2+ substructures derivable from Kagome-nets. Acta Crystallographica, B74, 712724.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Agakhanov, A.A. and Polekhovsky, Y.S. (2018 b) Aleutite, IMA 2018-014. CNMNC Newsletter No 43, June 2018, page 784; Mineralogical Magazine, 82, 779785.Google Scholar
Siidra, O.I., Nazarchuk, E.V., Zaitsev, A.N., Polekhovsky, Yu. S., Wenzel, T. and Spratt, J. (2019) Dokuchaevite, Cu8O2(VO4)3Cl3, a new mineral with remarkably diverse Cu2+ mixed-ligand coordination environments. Mineralogical Magazine, https://doi.org/10.1180/mgm.2019.41CrossRefGoogle Scholar
Starova, G.L., Krivovichev, S.V., Fundamenskii, V.S. and Filatov, S.K. (1997) The crystal structure of averievite, Cu5O2(VO4)2·nMX: comparison with related compounds. Mineralogical Magazine, 61, 441446.CrossRefGoogle Scholar
Starova, G.L., Krivovichev, S.V. and Filatov, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu4O2((As,V)O4)Cl. Zeitschrift für Kristallographie – Crystalline Materials, 213, 650653.CrossRefGoogle Scholar
Sheldrick, G.M. (2015): New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallographica, C71, 38.Google Scholar
Ulutagay, M., Schimek, G. L., Hwu, S.–J. and Taye, H. (1998) Coordination intercalation of NbAsO5 with alkali-metal chloride. Synthesis, structure, and spectroscopy of two new layered niobium(V) arsenate compounds, ANbAsO5Cl (A = Rb, Cs). Inorganic Chemistry, 37, 15071512.CrossRefGoogle Scholar
Vergasova, L.P., Starova, G.L., Filatov, S.K. and Anan'ev, V.V. (1998) Averievite Cu5(VO4)2O2·nMX – a new mineral of volcanic exhalations. Doklady Akademii Nauk, 359, 804807.Google Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.CrossRefGoogle Scholar
Supplementary material: File

Siidra et al. supplementary material

Siidra et al. supplementary material

Download Siidra et al. supplementary material(File)
File 127.6 KB