Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:25:24.708Z Has data issue: false hasContentIssue false

3D electron diffraction study of terrestrial iron oxide alteration in the Mineo pallasite

Published online by Cambridge University Press:  04 March 2022

Enrico Mugnaioli
Affiliation:
Department of Earth Sciences, University of Pisa, via S. Maria 53, I–56126 Pisa, Italy Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, I–56127 Pisa, Italy
Azzurra Zucchini*
Affiliation:
Department of Physics and Geology, University of Perugia, via A. Pascoli, I–06123 Perugia, Italy INFN, Section of Perugia, via A. Pascoli, I–06123 Perugia, Italy
Paola Comodi
Affiliation:
Department of Physics and Geology, University of Perugia, via A. Pascoli, I–06123 Perugia, Italy
Francesco Frondini
Affiliation:
Department of Physics and Geology, University of Perugia, via A. Pascoli, I–06123 Perugia, Italy INFN, Section of Perugia, via A. Pascoli, I–06123 Perugia, Italy
Luca Bartolucci
Affiliation:
Department of Physics and Geology, University of Perugia, via A. Pascoli, I–06123 Perugia, Italy
Alessandro Di Michele
Affiliation:
Department of Physics and Geology, University of Perugia, via A. Pascoli, I–06123 Perugia, Italy
Paola Sassi
Affiliation:
Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di sotto 8, I–06123 Perugia, Italy
Mauro Gemmi
Affiliation:
Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, I–56127 Pisa, Italy
*
*Author for correspondence: Azzurra Zucchini, Email: [email protected]

Abstract

The Mineo pallasite is a relatively poorly known meteorite, which shows interesting features that are not fully understood, such as the occurrence of iron oxide regions bordering both the olivine grain boundaries and the (Fe,Ni) metal. In this study, the Fe oxides have been characterised by Raman spectroscopy, electron microprobe analysis, field emission scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and 3D electron diffraction (3D ED). The combination of TEM–EDS and 3D ED yields a reliable identification of the chemical and crystallographic features of the cryptocrystalline portion of the sample investigated, enabling the Fe-oxide regions to be positively identified as goethite, FeO(OH).

The occurrence of goethite was unambiguously associated with terrestrial alteration, also confirmed by the presence of calcite, detected by TEM-EDS and 3D ED. Goethite contains minor elements such as Na, Si and Ca, probably coming from alumino-silicates in the terrestrial environment, and Ni associated with the (Fe,Ni) metal. The observation of goethite along olivine grain boundaries, as an alteration product of the (Fe,Ni) metal diagenesis, is also very intriguing as it might be related to the (Fe,Ni) metal intruded into the sub-micrometric olivine fragments during pallasite formation. Further work is needed to extensively analyse the texture and composition of olivine/metal boundaries.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Baldanza, B. (1965) Italian meteorites. Mineralogical Magazine, 35, 214232.10.1180/minmag.1965.035.269.24CrossRefGoogle Scholar
Boesenberg, J.S., Delaney, G.S. and Hewins, R.H.J. (2012) A petrological and chemical reexamination of Main Group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.10.1016/j.gca.2012.04.037CrossRefGoogle Scholar
Brázda, P., Palatinus, L. and Babor, M. (2019) Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science, 364, 667669.10.1126/science.aaw2560CrossRefGoogle Scholar
Bryson, J.F.J., Nichols, C.I.O., Herrero-Albillos, J., Kronast, F., Kasama, T., Alimadadi, H., van der Laan, G., Nimmo, F. and Harrison, R.J. (2015) Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.10.1038/nature14114CrossRefGoogle ScholarPubMed
Buseck, P.R. (1977) Pallasite meteorites mineralogy, petrology and geochemistry. Geochimica et Cosmochimica Acta, 41, 711740.10.1016/0016-7037(77)90044-8CrossRefGoogle Scholar
Campanale, F., Mugnaioli, E., Gemmi, M. and Folco, L. (2021) The formation of impact coesite. Scientific Reports, 11, 16011.10.1038/s41598-021-95432-6CrossRefGoogle ScholarPubMed
Eggleton, R.A. (1984) Formation of iddingsite rims on olivine: a transmission electron microscope study. Clays and Clay Minerals, 32, 111.10.1346/CCMN.1984.0320101CrossRefGoogle Scholar
Gemmi, M., Merlini, M., Palatinus, L., Fumagalli, P. and Hanfland, M (2016) Electron diffraction determination of 11.5 Å and HySo structures: Candidate water carriers to the Upper Mantle. American Mineralogist, 101, 26452654.10.2138/am-2016-5722CrossRefGoogle Scholar
Gemmi, M., Mugnaioli, E., Gorelik, T.E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. and Abrahams, JP (2019) 3D Electron Diffraction: The Nanocrystallography Revolution. ACS Central Science, 5, 13151329.10.1021/acscentsci.9b00394CrossRefGoogle ScholarPubMed
Gentili, S., Comodi, P., Nazzareni, S. and Zucchini, A. (2014) The Orvieto-Bagnoregio Ignimbrite: pyroxene crystal-chemistry and bulk phase composition of pyroclastic deposits, a tool to identify syn-and post-depositional processes. European Journal of Mineralogy, 26, 743756.10.1127/ejm/2014/0026-2404CrossRefGoogle Scholar
Goldstein, J.I. and Michael, J.R. (2006) The formation of plessite in meteoritic metal. Meteoritics & Planetary Science, 41, 553570.10.1111/j.1945-5100.2006.tb00482.xCrossRefGoogle Scholar
Grady, M.M. (2000) Catalogue of Meteorites Reference Book, 5th Ed. Cambridge University Press, Cambridge, UK, 696 pp.Google Scholar
Hanesch, M. (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177, 941948.10.1111/j.1365-246X.2009.04122.xCrossRefGoogle Scholar
Jones, C.G., Martynowycz, M.W., Hattne, J., Fulton, T.J., Stoltz, B.M., Rodriguez, J.A., Nelson, H.M. and Gonen, T (2018) The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Central Science, 4, 15871592.10.1021/acscentsci.8b00760CrossRefGoogle ScholarPubMed
Koch-Müller, M., Mugnaioli, E., Rhede, D., Speziale, S., Kolb, U. and Wirth, R. (2014) Synthesis of a quenchable high-pressure form of magnetite (h-Fe3O4) with composition Fe1(Fe2+0.75Mg0.26)Fe2(Fe3+0.70Cr0.15Al0.11Si0.04)2O4. American Mineralogist, 99, 24052415.10.2138/am-2014-4944CrossRefGoogle Scholar
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D (2007) Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy, 107, 507513.10.1016/j.ultramic.2006.10.007CrossRefGoogle ScholarPubMed
Kolb, U., Mugnaioli, E. and Gorelik, T.E. (2011) Automated electron diffraction tomography – a new tool for nano crystal structure analysis. Crystal Research and Technology, 46, 542554.10.1002/crat.201100036CrossRefGoogle Scholar
Krysiak, Y., Maslyk, M., Nádia Silva, B., Plana-Ruiz, S., Moura, H.M., Munsignatti, E.O., Vaiss, V.S., Kolb, U., Tremel, W., Palatinus, L., Amaral Leitão, A., Marler, B. and Pastore, H.O. (2021) The elusive structure of magadiite, solved by 3D electron diffraction and model building. Chemistry of Materials, 33, 32073219.10.1021/acs.chemmater.1c00107CrossRefGoogle Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N (2015) The Power of Databases: the RRUFF project Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). W. De Gruyter, Berlin.Google Scholar
Lanza, A.E., Gemmi, M., Bindi, L., Mugnaioli, E. and Paar, W.H. (2019) Daliranite, PbHgAs2S5: determination of the incommensurately modulated structure and revision of the chemical formula. Acta Crystallographica, B75, 711716.Google Scholar
Mugnaioli, E. and Gemmi, M. (2018) Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline. Zeitschrift für Kristallographie, 233, 163178.10.1515/zkri-2017-2130CrossRefGoogle Scholar
Mugnaioli, E., Gemmi, M., Tu, R., David, J., Bertoni, G., Gaspari, R., De Trizio, L. and Manna, L. (2018) Ab initio structure determination of Cu2−xTe plasmonic nanocrystals by precession-assisted electron diffraction tomography and HAADF-STEM imaging. Inorganic Chemistry, 57, 1024110248.10.1021/acs.inorgchem.8b01445CrossRefGoogle ScholarPubMed
Mugnaioli, E., Lanza, A.E., Bortolozzi, G., Righi, L., Merlini, M., Cappello, V., Marini, L., Athanassiou, A. and Gemmi, M. (2020a) Electron diffraction on flash-frozen cowlesite reveals the structure of the first two-dimensional natural zeolite. ACS Central Science, 6, 15781586.10.1021/acscentsci.9b01100CrossRefGoogle Scholar
Mugnaioli, E., Bonaccorsi, E., Lanza, A.E., Elkaim, E., Diez-Gómez, V., Sobrados, I., Gemmi, M. and Gregorkiewitz, M. (2020b) The structure of kaliophilite KAlSiO4, a long-lasting crystallographic problem. IUCrJ, 7, 10701083.10.1107/S2052252520012270CrossRefGoogle Scholar
Mullane, E., Alard, O., Gounelle, M. and Russella, S.S. (2004) Laser ablation ICP-MS study of IIIAB irons and pallasites: Constraints on the behaviour of highly siderophile elements during and after planetesimal core formation. Chemical Geology, 208, 528.10.1016/j.chemgeo.2004.04.024CrossRefGoogle Scholar
Nannenga, B.L., Shi, D., Leslie, A.G.W. and Gonen, T. (2014) High-resolution structure determination by continuous-rotation data collection in MicroED. Nature Methods, 11, 927931.10.1038/nmeth.3043CrossRefGoogle ScholarPubMed
Németh, P., Mugnaioli, E., Gemmi, M., Czuppon, G., Demény, A. and Spötl, C. (2018) A nanocrystalline monoclinic CaCO3 precursor of metastable aragonite. Sciences Advances, 4, eaau6178.Google ScholarPubMed
Pignatelli, I., Marrocchi, Y., Mugnaioli, E., Bourdelle, F. and Gounelle, M. (2017) Mineralogical, crystallographic and redox features of the earliest stages of fluid alteration in CM chondrites. Geochimica et Cosmochimica Acta, 209, 106122.10.1016/j.gca.2017.04.017CrossRefGoogle Scholar
Pignatelli, I., Mugnaioli, E. and Marrocchi, Y. (2018) Cronstedtite polytypes in the Paris meteorite. European Journal of Mineralogy, 30, 349354.10.1127/ejm/2018/0030-2713CrossRefGoogle Scholar
Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A. and Weirich, T. (2010) The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine, 74, 159177.10.1180/minmag.2010.074.1.159CrossRefGoogle Scholar
Rubin, A.E. (1997) Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32, 231247.10.1111/j.1945-5100.1997.tb01262.xCrossRefGoogle Scholar
Scott, R.D. (1977) Formation of olivine-metal textures in pallasite meteorites. Geochimica et Cosmochimica Acta, 6, 693710.10.1016/0016-7037(77)90043-6CrossRefGoogle Scholar
Seifert, W., Thomas, R., Rhede, D. and Forster, H.-J. (2010) Origin of coexisting wustite, Mg–Fe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite. European Journal of Mineralogy, 22, 495507.10.1127/0935-1221/2010/0022-2034CrossRefGoogle Scholar
Steciuk, G., Barrier, N., Pautrat, A. and Boullay, P. (2018) Stairlike aurivillius phases in the pseudobinary Bi5Nb3O15−ABi2Nb2O9 (A = Ba and Sr) System: A comprehensive analysis using superspace group formalism. Inorganic Chemistry, 57, 31073115.10.1021/acs.inorgchem.7b03026CrossRefGoogle ScholarPubMed
Steciuk, G., Škoda, R., Rohlíček, J. and Plášil, J. (2020) Crystal structure of the uranyl–molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)~5.0: insights from a precession electron-diffraction tomography study. Journal of Geosciences, 65, 1525.10.3190/jgeosci.297CrossRefGoogle Scholar
Suttle, M.D., Folco, L., Genge, M.J., Franchi, I. A., Campanale, F., Mugnaioli, E. and Zhao, X. (2021) The aqueous alteration of GEMS-like amorphous silicate in a chondritic micrometeorite by Antarctic water. Geochimica et Cosmochimica Acta, 293, 399421.10.1016/j.gca.2020.11.006CrossRefGoogle Scholar
Tarduno, J.A., Cottrell, R.D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., Blackman, E., Scott, E.R.D. and McKinley, R. (2012) Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.10.1126/science.1223932CrossRefGoogle ScholarPubMed
Tilley, D. and Bevan, A. (1998) The prolonged weathering of iron and stony-iron meteorite and their anomalous contribution to the Australian regolith. Pp. 7788 in New Approaches to an Old Continent, Proceedings of the 3rd Australian Regolith Conference (Kalgoorlie, Canberra) (Taylor, G. and Pain, C.F., editors). Perth: Cooperative Research Centre for Landscape Evolution & Mineral Exploration (CRC LEME).Google Scholar
Viti, C., Brogi, A., Liotta, D., Mugnaioli, E., Spiess, R., Dini, A., Zucchi, M. and Vannuccini, G. (2016) Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy). Journal of Structural Geology, 86, 112.10.1016/j.jsg.2016.02.013CrossRefGoogle Scholar
Wang, B., Rhauderwiek, T., Inge, A.K., Xu, H., Yang, T., Huang, Z., Stock, N. and Zou, X. (2018) A porous cobalt tetraphosphonate metal–organic framework: accurate structure and guest molecule location determined by continuous-rotation electron diffraction. Chemistry – A European Journal, 24, 17429–7433.10.1002/chem.201804133CrossRefGoogle ScholarPubMed
Weisberg, M.K., McCoy, T.J. and Krot, A.N. (2006) Systematics and evaluation of meteorite classification. Pp. 1952 in: Meteorites and the Early Solar System II (Lauretta, D.S. and McSween, H.Y. Jr., editors). University of Arizona Press, Tucson, Arizona, USA.10.2307/j.ctv1v7zdmm.8CrossRefGoogle Scholar
Xiong, F., Xu, X., Mugnaioli, E., Gemmi, M., Wirth, R., Grew, E.S., Robinson, P.T. and Yang, J. (2020) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr–11 chromitite orebody, Luobusa ophiolite, Tibet, China: is this evidence for super-reduced mantle-derived fluids? European Journal of Mineralogy, 32, 557574.10.5194/ejm-32-557-2020CrossRefGoogle Scholar
Xu, H., Lebrette, H., Clabbers, M.T.B., Zhao, J., Griese, J.J., Zou, X. and Högbom, M (2019) Solving a new R2lox protein structure by microcrystal electron diffraction. Science Advances, 5, eaax4621.10.1126/sciadv.aax4621CrossRefGoogle ScholarPubMed
Yang, J., Goldstein, J.I. and Scott, E.R.D. (2010) Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.10.1016/j.gca.2010.04.016CrossRefGoogle Scholar
Zucchini, A., Petrelli, M., Frondini, F., Petrone, C.M., Sassi, P., Di Michele, A., Palmerini, S., Trippella, O. and Busso, M (2018) Chemical and mineralogical characterization of the Mineo (Sicily, Italy) pallasite: A unique sample. Meteoritics & Planetary Science, 53, 268283.10.1111/maps.13002CrossRefGoogle Scholar