Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T03:31:47.808Z Has data issue: false hasContentIssue false

Yoderite, a new hydrous magnesium iron aluminosilicate from Mautia Hill, Tanganyika

Published online by Cambridge University Press:  14 March 2018

Duncan McKie*
Affiliation:
Dept. of Mineralogy and Petrology, Downing Place, Cambridge

Summary

Yoderite occurs as a major constituent in a quartz-kyanite-tale schist, and is a high-pressure phase formed by the reaction Ky + Tc → Yd + Qu. The monoclinic unit-cell, a 8·10 Å., b 5·78 Å., c 7·28 Å., β 106°, space-group P21 or P21m, contains approximately (Mg2·0Ca0·2Fe0·5Al5·3Si4·0O17·6(OH)2·4. The structure appears to be related to that of kyanite, with which the mineral is intergrown; it is not an analogue of staurolite. The three strongest powder lines are 3·50 Å. vvs, 3·03 Å. vs, 2·61 Å. s. Specific gravity 3·39. Subsidiary reflections, similar to those of the intermediate plagioclases, have indices with non-simple fractional values of k. Optical properties are α 1·689 pale Prussian blue, β 1·691 indigo, γ 1·715 light olivegreen, absorption β > α > γ, 2Vγ25°, optic axial plane {010}, γ:[001] ≈ 7° in the obtuse angle β. An interpretation of the colour on the electron-exchange hypothesis Fe2+ ⇌ Fe3+ + e, is suggested. A kinetic study has been made of the disappearance of the subsidiary reflections in the range 700°C. to 820°C.; further heating to 850°C. produces the metastable appearance of mullite, and at temperatures above 1100°C. the equilibrium anhydrous assemblage indialite + sapphirine appears.

Type
Research Article
Copyright
Copyright © 1959, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, (S.O.) and Smith, (J.V.), 1957. Abstracts Fourth Internat. Congr. of Cryst., Montreal, p. 32.Google Scholar
Barrer, (R.M.), 1951. Diffusion in and through solids. Cambridge University Press.Google Scholar
Bowen, (N.L.) and Tuttle, (O.F.), 1949. Bull. Geol. Soc. Amer., vol. 60, p. 439.Google Scholar
Bown, (M.G.) and Gay, (P.), 1958. Zeits. Krist., vol. I I I , p. 1.Google Scholar
Bragg, (W.L.), Sykes, (C.), and Bradley, (A.J.), 1937. Proc. Phys. Soc., vol. 49, extra part, p. 96.Google Scholar
Chayes, (F.), 1958. Acta Cryst., vol. 11, p. 323.Google Scholar
Clark, (S.P.), Robertson, (E.C.), and Birch, (F.), 1957. Amer. Journ. Sci., vol. 255, p. 628.Google Scholar
Cole, (W.F.), Sörum, (H.), and Taylor, (W.H.), 1951. Aeta Cryst., vol. 4, p. 20.CrossRefGoogle Scholar
Eskola, (P.), 1914. Bull. Comm. Geol. Finlande, no. 40.Google Scholar
Eugster, (H.P.), 1956. Ann. Rept. Geophys. Lab. 19556, p. 158.Google Scholar
Gay, (P.), 1956. Min. Mag., vol. 31, p. 21.Google Scholar
Gay, (P.), and Bown, (M.G.), 1956. Ibid., vol. 31, p. 306.Google Scholar
Groves, (A.W.), 1951. Silicate Analysis, 2nd edn, London.Google Scholar
Halferdahl, (L.B.), 1957. Ann. Rept. Geophys. Lab. 1956-7, p. 225.Google Scholar
Hey, (M.H.), 1941. Min. Mag., vol. 26, p. I16.Google Scholar
Kennedy, (G.C.), 1950. Amer. Journ. Sci., vol. 248, p. 540.CrossRefGoogle Scholar
Lipson, (H.), 1950. Progress in Metal Physics, vol. 2, p. i.CrossRefGoogle Scholar
MacCarthy, (G.R.), 1926. Amer. Journ. Sci., set. 5, vol. 12, p. 17.Google Scholar
Mackenzie, (R.C.) et al., 1957. The Differential Thermal Investigation of Clays. Mineralogical Society, London.Google Scholar
Megaw, (H.D.), 1957. In Conference Report, Brit. Journ. Appl. Physics, vol. 8, p. 427.Google Scholar
Meyer, (C.F.), 1934. The diffraction of light, X-rays, and material particles. University of Chicago Press.Google Scholar
Miyashiro, (A.), Iiyama, (T.), Yalviasaki, (M.), and Miyashiro, (T.), 1955. Amer. Journ. ScL, vol. 253, p. 185.Google Scholar
Naray-Szabo, (St.), Taylor, (W.H.), and Jackson, (W.W.), 1929. Zeits. Krist., vol. 71, p. 117.Google Scholar
Ross, (C.S.) and Hendricks, (S.B.), 1945. U.S. Geol. Surv., Prof. Paper 205-B.Google Scholar
Roy, (D.M.) and Roy, (R.), 1955. Amer. Min., vol. 40, p. 147.Google Scholar
Skerl, (A.C.) and Bannister, (F.A.), 1934. Min. Mag,, vol. 23, p. 598.Google Scholar
Temmerler, (B.N.), 1938. Geol. Surv. Tanganyika, Short Paper 19.Google Scholar
Weyl, (W.A.), 1951.. Coloured Glasses. Soc. of Glass Technology, Sheffield.Google Scholar
Weyl, (W.A.), 1951.. Journ. Phys. Chem., vol. 55, p. 507.Google Scholar
Wilchinsky, (Z.W.), 1944. Journ. App1. Phys., vol. 15, p. 806.Google Scholar
Yoder, (H.S.), 1952. Amer. Journ. Sci., Bowen vol., p. 569.Google Scholar