Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T20:06:25.120Z Has data issue: false hasContentIssue false

Stability and relations of the Al-Fe epidotes

Published online by Cambridge University Press:  14 March 2018

R. G. J. Strens*
Affiliation:
Department of Geology and Geophysics, University of California, Berkeley1

Summary

The various (P, T) stability fields of iron-free zoisite have been deduced for systems containing excess silica and water with Ca : Al ratios ranging from 1 : 2 (anorthite) to 3:2 (grossular). Zoisite is a possible phase in all systems with Ca:Al lower than 3:2, attaining its maximum stability at the zoisite (Ca:Al = 2:3) and prehnite (Ca:Al = 2:2) compositions.

The consequences of varying the Al : Fe ratio are next examined. Zoisite with 4 % pistacite is stable to 525° at 2 kilobars, compared with ∼585° for clinozoisite and 620 to 630° for epidote (Ps35) at the same pressure. Increasing iron content also stabilizes epidote minerals relative to their low-temperature and high-pressure decomposition products.

Examples of natural zoisite-clinozoisite, zoisite-epidote, and clinozoisite-epidote assemblages are described. It is concluded that zoisite-epidote mixtures result from the disproportionation of clinozoisite outside its own stability field, but within those of zoisite and epidote. The assemblage zoisite-clinozoisite is probably not stable, but further evidence is needed on this point. The assemblage clinozoisite-epidote is stable below 550° C, at which temperature the solvus in the Al-Fe series closes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coombs, (D. S.), Ellis, (A. J.), Fyfe, (W. S.), and Taylor, (A. M.), 1959. Geochimica Acta, vol. 17, p. 53.CrossRefGoogle Scholar
De Rudder, (R. D.) and Beck, (C. W.), 1963. Progr. Abstr. Geol. Soc. Amer. p. 42A.Google Scholar
Firman, (R. J.), 1957. Quart. Journ. Geol. Soc., vol. 113, p. 205.CrossRefGoogle Scholar
Foye, (W. G.), 1926. Amer. Min., vol. 11, p. 210.Google Scholar
Fyfe, (W. S.), 1960. Nature, vol. 187, p. 497.Google Scholar
Hietanen, (A.), 1938. Bull. Comm. géol. Finlande, no. 122.Google Scholar
Holdaway, (M. J.), 1963. Progr. Abstr. Geol. Soc. Amer., p. 81A.Google Scholar
Johnston, (R. W.), 1949. Min. Mag., vol. 28, p. 505.Google Scholar
Lee, (D. E.), Coleman, (R. G.), and Erd, (R. C.), 1963. Journ. Petrol., vol. 4, p. 460.Google Scholar
Merrin, (S.), 1962. Unpublished Ph.D. thesis, Pennsylvania State Univ.Google Scholar
Newton, (R. C.) and Kennedy, (G. C.), 1963. Journ. Geophys. Res., vol. 68, p. 2967.Google Scholar
Orlov, (A.), 1925. [Publ. fac. Sci. Univ. Charles, Prague, no. 39] ; abstr. M.A. 3-49.Google Scholar
Orlov, (A.), 1926. [Vestn. Kralov. Ceske Spolecn. Nauk (Mem. Soc. Roy. Sci. Boheme), no. 19]; abstr. M.A. 8-352.Google Scholar
Pabst, (A.), 1931. Amer. Min., vol. 16, p. 327.Google Scholar
Rogers, (A. F.), 1924. Ibid., vol. 9, p. 221.Google Scholar
Sakurai, (K.) and Nacashima, (K.), 1956. Journ. Min. Soc. Japan, vol. 2, p. 474.Google Scholar
Strens, (R. G. J.), 1963. Nature, vol. 198, p. 80.CrossRefGoogle Scholar
Strens, (R. G. J.), 1964. Min. Mag., vol. 33, p. 868.Google Scholar
Winkler, (H. G. F.) and Nitsch, (K. H.), 1962. Naturwiss., vol. 49, p. 605.Google Scholar
Winkler, (H. G. F.) 1963. Ibid., vol. 50, p. 612.Google Scholar
Zambonini, (F.), 1920. [Bol. Com. Geol. Ital., vol. 47, p. 65] ; abstr. M.A. 2-187.Google Scholar