Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T16:14:00.380Z Has data issue: false hasContentIssue false

Some physical properties of raw and calcined flint

Published online by Cambridge University Press:  14 March 2018

J. H. Weymouth
Affiliation:
Division of Industrial Chemistry, Commonwealth Scientific and Industrial Research Organization, Australia
W. O. Williamson
Affiliation:
Division of Industrial Chemistry, Commonwealth Scientific and Industrial Research Organization, Australia

Extract

Flint from the chalk of north-western Europe has long been an ingredient of ceramic 'bodies'. It is still widely used by British pottery manufacturers in glazed tries and in certain types of tableware. Continental manufacturers also have made some use of it.

Flint is more readily converted to cristobalite than are the coarsergrained varieties of quartzose silica. The presence of an adequate amount of cristobalite in the 'body' ensures that, at room-temperature, the glaze-film on the ware shall be under a compressive stress. Thus the development of 'crazing', i.e. of minute tension-fissures in the glaze, tends to be avoided.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, (D.A.), 1949. A note on the conversion of amorphous silica to quartz Amer. Min., vol. 34, pp. 601605. [M.A. 11–68.]Google Scholar
Bancroft, (W.D.) and Gurchot, (C.), 1932. The scattering of light. Journ. Phys. Chem., vol. 36, pp. 25752587.Google Scholar
Bosazza, (V.L.), 1937. A study of the chert of the dolomite series of the Transvaal System. South African Journ. Sei., vol. 34, pp. 178185.Google Scholar
Bradley, (R.S.), Schroeder, (F.W.), and Keller, (W.D.), 1940. Study of the refractory properties of topaz. Journ. Amer. Ceram. Soc., vol. 23, pp. 265270.CrossRefGoogle Scholar
Colin, (G.) and Kolthoff, (I.M.), 1948. Thermal aging of silica. Festskrift J. Arvid Hedvall, pp. 97116. Göteborg.Google Scholar
Correns, (C.W.) and Nacelschmidt, (G.), 1933. Uber Faserbau und optische Eigenschaften yon Chalzedon. Zeits. Krist,, vol. 85, pp. 199–13. [M.A. 5– 381.]Google Scholar
Culbertson, (J.L.) and Weber, (M.K.), 1938. The densities of fine powders. II. Journ. Amer. Chem. Soc., vol. 60, pp. 26952697.Google Scholar
Durham, (K.C.), Claringbull, (G.F.), and Bannister, (F.A.), 1948. Dickite and collophane in the Magnesian Limestone of Durham. Min. Mag., vol. 28, pp. 338342.Google Scholar
Endell, (J.), 1948. Rhntgenographischer Naehweis kristalliner Zwischenzustände bei der Bildung von Cristobalit aus Kieselgur beim Erhitzen. Koll. Zeits., vol. 111, pp. 19–2.Google Scholar
Endell, (K.) and Rieke, (R.), 1913. Über die Umwandlungen des Kieselsäureanhydrids bei höheren Temperaturen. Zeits. Anorg. Chem., vol. 79, pp. 239– 259; see also Silikat–Zeits., 1913.vol. 1, pp. 4852, 67–72, 8589.Google Scholar
Fenner, (C.N.), 1913. The stability relations of the silica minerals. Amer. Journ. Sei., ser. 4, vol. 36, pp. 331384.Google Scholar
Greig, (J.W.), 1932. The existence of the high–temperature form of eristobalite at room temperature and the crystallinity of opal. Journ. Amer. Chem. Soc., vol. 54, pp. 28462849. [M.A. 5–382.]Google Scholar
Heath, (A.) and Leese, (A.), 1923. Black and grey flints. Trans. Ceram. Soc., vol. 22, pp. 313316.Google Scholar
Heath, (A.) and Mellor, (J.W.), 1914. The action of heat on binary mixtures of felspar, flint, and china clay. Collected Papers from the County Pottery Laboratory, Staffordshire, vol. 1, pp. 138157.Google Scholar
Hedvall, (J.A.) and Sjoman, (P.), 1931. Uber die Bedeutung kristallographischer Umwandlungen der Kieselsiäure für ihre Reaktionsfiähigkeit im festen Zustande. Zeits. Etektrochem. u. angew, physik. Chem., vol. 37, pp. 130142.Google Scholar
Holdridge, (D.A.), Nancarrow, (H.A.), and Francis, (M.), 1942. The effect of time and temperature on the density and erushability of flint. Trans. Brit. Ceram. Soc., vol. 41, pp. 149164.Google Scholar
Rouldsworth, (H. S.) and Cobb, (J.W.), 1922. The reversible thermal expansion of silica. Trans. Ceram. Soe., vol. 21, pp. 227276.Google Scholar
Hugill, (W.) and Rees, (W.J.), 1931. A note on silica bricks made from chalk flints. Trans. Ceram. Soe., vol. 30, pp. 342346.Google Scholar
Klein, (A.A.), 1916. Constitution and microstructure of porcelain. Tech. Papers Bur. Standards, Washington, no. 80; see also Trans. Amcr. Ceram. Soc., 1916.vol. 18, pp. 377423.Google Scholar
Le Chatelier, (H.), 1890. Sur la dilatation de la silice. Compt. Rend. Acad. Sci., Paris, vol 111, pp. 123126.Google Scholar
Le CHATELIER, (H.), 1914. La silice et les silicates. Paris; see also Revue Universelle des Mines, 1913.vol. 1, pp. 85142.Google Scholar
Levin, (I.) and OTT (E), 1933. X–ray study of opals, silica glass and silica gel. Zeits. Krist., vol. 85, pp. 305318. [M.A. 5–381.]Google Scholar
Macgreoor, (A.G.), 1931. Clouded felspars and thermal metamorphism. Min. Mag., vol. 22, pp. 524538.Google Scholar
Martin, (G.), 1927. Researches on the theory of fine grinding. Part VIII.—On the variation in the specific gravity of quartz sands on prolonged grinding. Trans. Ceram. Soe., vol. 26, pp. 4558.Google Scholar
Mellor, (J.W.) and Campbell, (A.J.), 1916. Studies in flint and quartz. Trans. English Ceram. Soc., vol. 15, pp. 77116.Google Scholar
Oakler, (K.P.), 1939. The nature and origin of flint. Sci. Progress, vol. 34, pp. 277286. [M.A. 7–509.]Google Scholar
Ostwald, (W.), 1924. Lieht und Farbe in Kolloiden. Dresden and Leipzig. Pressler, (E.E.) and Shearer, (W.L.), 1926. Properties of potters' flints and their effects in white–ware bodies. Technologic Papers Bur. Standards, Washington, no. 310.Google Scholar
Raman, (C.V.) and Ramaseshan, (S.), 1949. The Christiansen experiment with spherical particles. Proc. Indian. Acad. Sci., Sect. A, vol. 30, pp. 211215.Google Scholar
Robson, (J.T.), 1922. The influence of heat on the microscopic properties of silica in its different mineral forms. Journ. Amer. Ceram. Soe., vol. 5, pp. 670674.Google Scholar
Schulman, (J.H.), Claffy, (E.W.), and Ginther, (R.J.), 1949. Some observations on the crystallization of silicic acid. Amer. Min., vol. 34, pp. 6873. [M.A. 11– 87.]Google Scholar
Shishacow, (N.A.), 1936. Anomalous structures of fine crystalline silica. Compt. Rend. (Doklady) Acad. Sci. U.R.S.S., vol. 1 (10), pp. 1922. [M.A. 7–85.]Google Scholar
Shoulejkin, (W.), 1924. Scattering of light by very big colloidal particles. Phil. Mag., vol. 48, pp. 307320.Google Scholar
Simpson, (T.) and Webb, (H.W.), 1939. Silica in earthenware bodies. Trans. Brit. Ceram. Soe., vol. 38, pp. 226244.Google Scholar
Sinclair, (D.) and LA Mer, (V.K.), 1949. Light scattering as a measure of particle size in aerosols. Chem. Reviews, vol. 44, pp. 245267.Google Scholar
Sosman, (R.B.), 1927. The properties of silica. New York.Google Scholar
Tarr, (W. A.), The origin of chert and flint. Univ. Missouri Studies, vol. 1, no. 2. [M.A. 4-48.]Google Scholar
Tuttle, (O.F.), 1949. The variable inversion temperature of quartz as a possible geologic thermometer. Amer. Min., vol. 34, pp. 723730. [M.A. 11–180.]Google Scholar
Washburn, (E.W.) and NAVIAS (L.). The products of the calcination of flint and chalcedony. Journ. Amer. Ceram. Soc., vol. 5, pp. 565585.Google Scholar
Webb, (H.W.), 1939. Some observations on crazing. Trans. Brit. Ceram. Soc., vol. 38, pp. 75121.Google Scholar
Wells, (A.K.), 1947. On the origin of the oolitic, spherulitic and rhomb–bearing cherts. Proc. Geol. Assoc., vol. 58, pp. 242255.Google Scholar
White, (W.P.), 1027. One bit of evidence regarding the relation of chalcedony to quartz. Journ. Washington Acad. Sci., vol. 17, pp. 344–315.Google Scholar
Williamson, (W.O.), 1940. The reversible darkening in daylight of some glazes containing titanium. Trans. Brit. Ceram. Soc, vol. 39, pp. 345368. [II.A. 8–127.]Google Scholar
Williamson, (W.O.), 1941. Some structures of unfired pottery bodies revealed by a new technique. Trans. Brit. Ceram. Soc, vol. 40, pp. 275 294.Google Scholar
Williamson, (W.O.), 1949. Ceramic products; their geological interest and analogies. Amer. Journ. Sci., vol. 247, pp. 715749. [M.A. 11–84.]Google Scholar
Woods, (R.W.), 1934. reprinted 1947. Physical Optics, 3rd edit. New York.Google Scholar