Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T20:55:43.336Z Has data issue: false hasContentIssue false

Residual hydroxyl groups in the metakaolin range1

Published online by Cambridge University Press:  14 March 2018

V. Stubičan*
Affiliation:
Institute for Silicate Chemistry, Zagreb, Yugoslavia

Summary

Infra-red absorption spectroscopy has been used to study the retention of hydroxyl groups by kaolinite and halloysite after heat treatment in the range 600° C. to 850° C. Structurally disordered specimens initially lose water more rapidly than do ordered specimens, but retain hydroxyl groups at higher temperatures. Work on the phases obtained above 1100° C. is incomplete, but results for the lower temperatures indicate that the ordered structures tend to retain their atomic arrangement and form metakaolin, whereas disordered structures readily rearrange to yield γ-alumina, to the formation of which water is probably essential.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Extracted from a thesis submitted to the University of Zagreb for a title of Assistant Professor.

References

Adler, (H.), 1950. Amer. Petroleum Inst. Project, vol. 49, p. 1.Google Scholar
Brindley, (G. W.) and Hunter, (K.), 1955. Min. Mug., vol. 30, p. 182.Google Scholar
Brindley, (G. W.) and Nakahira, (M.), 1957. Journ. Amer. Ceram. Soc., vol. 40, p. 346.Google Scholar
Glemser, (O.) and Rieck, (G.), 1956. Angew. Chem., vol. 68, p. 182.Google Scholar
Glemser, (O.) 1957. Trans. XVI Intern. Cong. Pure & Appl. Chem. Paris, vol. I, p. 52 {abstract).Google Scholar
Harris, (L.), 1955. Journ. 0pt. Soc. Amer., vol. 45, p. 27.Google Scholar
Hoyden, (G. M.) and De Boer, (J. H.), 1952. Trans. Intern. Ceram. Congr.: 3rd Congr., Paris, p. 77.Google Scholar
Houben, (M.), Wisherd, (M. P.), and Bonham, (L. C.), 1950. Anal. Chem., vol. 22, p. 1478.Google Scholar
Hunt, (H.) and Ewell, (R. H.), 1935. Journ. Res. Nat. Bur. Stand., vol. 14, p. 615.Google Scholar
Karšulin, (M.), 1956. Dachema Monograph, vol. 27, p. 91.Google Scholar
Keller, (D. W.) and Pickett, (E. E.), 1950. Amer. Journ. Sci., vol. 248, p. 264.CrossRefGoogle Scholar
Konopicky, (K.), Hopmann, (U.), and Kampa, (P.), 1956. Ber. deutseh, keram. Gesell., vol. 33, p. 52.Google Scholar
Murray, (P.) and White, (J.), 1955. Trans. Brit. Ceram. Soc., vol. 54, p. 137.Google Scholar
Preining, (O.), Schedling, (J. A.), and Wein, (J. B.), 1953. Acta Phys. Austriaca, vol. 8, p. 89.Google Scholar
(Rustum), Roy and Francis, (E. E.), 1953. Amer. Min., vol. 38, p. 725.Google Scholar
(Rustum), Roy, Roy, (D. M.), and Francis, (E. E.), 1955. Journ. Amer. Ceram. Soc., vol. 30, p. 198.Google Scholar
Roy, (D. M.) and (Rustum), Roy, 1957. Geoehimica Acta, vol. 11, p. 72.Google Scholar
Saalfeld, (H.), 1955. Ber. deutseh, keram. Gesell., vol. 52, p. 150.Google Scholar
Stubičan, (V.) and Wrischer, (M.), 1958. Kolloid Zeits., in press.Google Scholar