Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T20:52:41.083Z Has data issue: false hasContentIssue false

The powder patterns and lattice parameters of plagioclase felspars. I. The soda-rich plagioclases

Published online by Cambridge University Press:  14 March 2018

J. V. Smith*
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, 8, D.C.; and Department of Mineralogy and Petrology, Downing Street, Cambridge.

Summary

Geiger-counter powder records of soda-rich plagioclases have been carefully measured and indexed. The lattice parameters of the synthetic specimens are almost independent of the lime content, the largest variation (that in β*) amounting to only 0·2°. After strong heating the powder patterns of the natural specimens closely approached those of the synthetic specimens.

Eight out of the nine natural plagioclases gave lattice parameters which fall within experimental error on a continuous line. There is a fairly large variation in lattice parameters, especially for γ*, which changes by 2°. As the lime content increases the lattice parameters of the natural plagioclases approach those for the high-temperature synthetic and heated natural specimens until at An50 the separation is only one-fifth of that at An0. The ninth specimen (from a dacite) gives parameters midway between the curves, thus exhibiting a state of partial inversion.

The partially heated natural plagioclases and the plagioclase from the dacite give parameters indistinguishable within experimental error from the parameters of unheated plagioclases with a higher lime content. There is, therefore, no reliable powder X-ray method for the determination of composition in the region An0-An50. If the composition is known the powder method may be used for the determination of the thermal state. If the plagioclase can be judged to be in the low-temperature state from geological evidence the powder method can be used to estimate the composition with an accuracy of 2 % An.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, (L. H.) and Rowe, (F. A.), 1954. The preparation of specimens for the focusing-type X-ray spectrometer. Amer. Min., vol. 39, p. 215.Google Scholar
Bowen, (N. L.), 1913. The melting phenomena of the plagioclase feldspars. Amer. Journ. Sci., ser. 5, voh 35, p. 577.CrossRefGoogle Scholar
Bowen, (N. L.) and Tuttle, (O. F.), 1950. The system NaAlSi3O8—KA1Si3O8—H20. Journ. Geol., Chicago, vol. 58, p.489 [M.A. 11-325].CrossRefGoogle Scholar
Chayes, (F.) and Robbins, (C. R.), 1953. Carnegie Institution of Washington, Year Book no. 52, p. 45.Google Scholar
Claisse, (F.), 1950. A Roentgenographic method for determining plagioclases. Amer. Min., vol. 35, p. 412 [M.A. 11 428].Google Scholar
Cole, (W. F.), Sörum, (H.), and Taylor, (W. H.), 1951. The structures of the plagioclase felspars. I. Acta Cryst., vol. 4, p. 20 [M.A. 11-427].CrossRefGoogle Scholar
Davis, (G. L.) and Tuttle, (O. F.), 1952. Two new crystalline phases of anorthite composition, CaO.Al2O3.2SiO2 . Amer. Journ. Sci., Bowen volume, p. 107 [M.A. 12 79].Google Scholar
Donnay, (G.) and Donnay, (J. D. H.), 1951. Tables for the interpretation of X-ray diffraction data, &c. Crystallographic Laboratory of the Johns Hopkins University, Baltimore.Google Scholar
Donnay, (G.) and Donnay, (J. D. H.) 1952. The symmetry change in the high-temperature alkali-feldspar series. Amer. Journ. Sci., Bowen volume, p. ll5 [M.A. 12-96].Google Scholar
Emmons, (R. C.), 1953. Selected petrogenic relationships of plagioclase. Mem. Geol. Soc. Amer., no. 52 [M.A. 12 136].Google Scholar
Fisher, (R. A.), 1950. Statistical methods for research workers, llth edn., Edinburgh, section 29.Google Scholar
Game, (P. M.), 1949. Plagioclases from Sultan Hamud, Kenya. Min. Mag., vol. 28, p. 682.Google Scholar
Gay, (P.), 1956. The structures of the plagioelase felspars: VI. Min. Mag., vol. 31, p. 21.Google Scholar
Gay, (P.) and Smith, (J. V.), 1955. Phase relations in the plagioclase felspars: composition range An0 to An70 . Acta Cryst., vol. 8, p. 64.CrossRefGoogle Scholar
Goodyear, (J.) and Duffin, (W. J.), 1954. The identification and determination of plagioelase felspars by the X-ray powder method. Min. Mag., vol. 30, p. 306.Google Scholar
Keith, (M. L.) and Tuttle, (O. F.), 1952. Significance of variation in the high-low inversion of quartz. Amer. Journ. Sci., Bowen volume, p. 203 [M.A. 12-122].Google Scholar
Kracek, (F. C.) and Neuvonen, (K. J.), 1952. Thermochemistry of plagioelase and alkali feldspars. Ibid., p. 293 [M.A. 12-134].Google Scholar
Laves, (F.), 1952. Phase relations of the alkali feldspars. II. Journ. Geol., Chicago, vol. 60, p. 549, table 2 [M.A. 12-136].CrossRefGoogle Scholar
Laves, (F.), 1954. The coexistence of two plagioclases in the oligoclase compositional range. Ibid., vol. 62, p. 409 [M.A. 12-527].Google Scholar
MacKenzie, (W. S.), 1952. The effect of temperature on the symmetry of high-temperature soda-rich feldspars. Amer. Journ. Sci., Bowen volume, p. 319 [M.A. 12-135].Google Scholar
Nelson, (J. B.) and Riley, (D. P.), 1945. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Physical Soc. London, vol. 57, p. 160.CrossRefGoogle Scholar
Parrish, (W.), 1953. Philips Technical Reports, no. 68.Google Scholar
Smith, (J. V.) and Sahama (Th. G.), 1954. Determination of the composition of natural nephelines by an X-ray method. Min. Mag., vol. 30, p. 439.Google Scholar
Tuttle, (O. F.) and Bower, (N. L.), 1950. High-temperature albite and contiguous feldspars. Journ. Geol., Chicago, vol. 58, p. 572 [M.A. 11-327].CrossRefGoogle Scholar