Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:14:55.275Z Has data issue: false hasContentIssue false

The orientation of the pericline twin lamellae in triclinic alkali felspars (With Plate II.)

Published online by Cambridge University Press:  14 March 2018

Wm. Scott MacKenzie*
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., U.S.A.

Summary

Cross-hatched twinning is characteristic of two alkali-felspar species, microclines and anorthoclases. Because of the difference in the crystallographic angles of these two species, the cross-hatched twinning is most clearly seen in (001) sections of microcline and in sections perpendicular to the a crystallographic axis in anorthoclases. If pericline twinning is present it is generally seen in (010) sections of microclines, but if the microcline is microperthitic the twin lamellae may not be seen. Strings or lamellae of perthitic albite can be distinguished from pericline twin lamellae by refractive index differences and also by the angle that their trace makes with the trace of (001) in (010) sections.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, (O.), 1928. Norsk Geol. Tidsskr., vol. 10, p. 116.Google Scholar
Boggild, (O. B.), 1924. Kgl. Danske Vidensk. Selskab., Math.-fys. Medd., vol. 6, p. 1 [M.A. 2-492].Google Scholar
Donnay, (G.) and Donnay, (J. D. H.), 1952. Amer. Journ. Sci., Bowen volume, p. 115 [M.A. 12-96].Google Scholar
Foerstner, (H.), 1884. Zeits. Kryst. Min., vol. 9, p. 333.Google Scholar
Laves, (F.), 1950. Journ. Geol., Chicago, vol. 58, p. 548 [M.A. 11-327].Google Scholar
Laves, (F.), 1952. Ibid., vol. 60, pp. 436, 549 [M.A. 12-136].Google Scholar
Lewis, (W. J.), 1899. A treatise on crystallography. Cambridge, p. 550.Google Scholar
MacKenzie, (W. S.), 1952. Annual report of the Director of the Geophysical Laboratory. Carnegie Inst. Washington Yearbook, no. 51, p. 50.Google Scholar
MacKenzie, (W. S.), 1954. Min. Mag., vol. 30, p. 354.Google Scholar
MacKenzie, (W. S.), and Smith, (J. V.), 1955. Amer. Min., vol. 40, p. 707.Google Scholar
Rosenbusch, (H.), 1885. Mikroskopische Physiographie der Mineralien und Gesteine. 2nd edn., vol. 1, Stuttgart.Google Scholar
Spencer, (E.), 1930. Min. Mag., vol. 22, p. 291.Google Scholar
Spencer, (E.), 1937. Ibid., vol. 24, p. 453.Google Scholar
Story-Maskelyne, (N.), 1895. Crystallography. Oxford, p. 382.Google Scholar
Tilley, (C. E.), 1954. Amer. Journ. Sci., vol. 252, p. 65 [M.A. 12-371].CrossRefGoogle Scholar
Tunell, (G.), 1952. Ibid., Bowen volume, p. 547 [M.A. 12-314].Google Scholar
Tuttle, (O. F.), 1952. Ibid., p. 553 [M.A. 12-133].Google Scholar