Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T06:18:49.992Z Has data issue: false hasContentIssue false

New data on the slag-minerals nagelschmidtite and steadite

Published online by Cambridge University Press:  14 March 2018

E. R. Segnit*
Affiliation:
Department of Mineralogy and Petrology, University of Cambridge

Extract

In 1937 G. Nagelschmidt described a new silicophosphate mineral obtained from basic slag. It resembled the earlier described silicocarnotite (A. Carnot and A. Richard, 1883; D. P. Riley and E. R. Segnit, 1949) in its solubility in citric acid. Nagelschmidt gave optical, chemical, and X-ray data which indicated that the material had a composition of approximately 7CaO.P2O5.2SiO2, and agreed closely with a phase reported by G. Trömel (1943) in his investigation of the system CaO-P2O5-SiO2. The material was further considered by M. A. Bredig (1941), who published cell dimensions worked out from powder photographs, assuming that nagelschmidtite was a solid solution of tricalcium phosphate in a predicted high-temperature hexagonal form of dicalcium silicate. R. L. Barrett and W. J. McCaughey (1942) gave further data, chiefly connected with phase relationships in the binary system Ca2SiO4-Ca3P2O8. Finally, S. O. Agrell (1946) published further data on the slag mineral, giving the chemical analyses and optical properties of two samples, together with a discussion of the phase relationships of the material in slags, and hence in the binary system mentioned above. The name 'nagelschmidtite' is due to Barrett and McCaughey.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, (S.O.), 1946. Journ. Iron and Steel Inst., vol. 152(no. 2 for 1.945), p. 19P. [M.A. 10-111.]Google Scholar
Balajrr, (K.), Quarbell, (A.G.), and Vajragupta, (P.), 1946. Ibid., vol. 153, p. 115.Google Scholar
Barrett, (R.L.) and Mccaughey, (W.J.), 1942. Amer. Min., vol. 27, p. 680. [M.A. 8-312.]Google Scholar
Bredig, (M.A.), 1941. Journ. Amer. Chem. Soc., vol. 63, p. 2533.CrossRefGoogle Scholar
Bredig, (M.A.), 1943. Amer. Min., vol. 28, p. 594. [M.A. 9-92.]Google Scholar
Brownmiller, (L.T.) and Bogue, (R.H.), 1930. Amer. Journ. Sci., ser. 5, vol. 20, p. 241. [M.A. 4-366.]Google Scholar
Bockino, (H.) and Linck (G), 1887. Stahl und Eisen, vol. 4, p. 245.Google Scholar
Carnot, (A.) and Richard, (A.), 1883. Bull. Soc. Min. France, vol. 6, p. 237.Google Scholar
Greene, (K.T.), 1944. Journ.Res. Nat. Bur. Standards, U.S.A., vol. 32, p. 1.Google Scholar
Hilgenstock, (O.), 1883. Stahl und Eisen vol. 3, p. 498.Google Scholar
Element, (R.) and Steckenreiter, (F.), 1940. Zeits. Anorg. Chem., vol. 245, p. 236.Google Scholar
Kroll, (V.A.), 1911. Journ. Iron and Steel Inst., vol. 84, p. 126.Google Scholar
Mcconnell, (D.), 1937. Amer. Mill., vol. 22, p. 977. [M.A. 7-14.]Google Scholar
Nacken, (R.), 1912. Centralbl. Min., p. 545.Google Scholar
Nagelschmidt, (G.), 1937. Journ. Chem. Soc. London, p. 865. [M.A. 7-147.]Google Scholar
Riley, (D.P.) and Segnit, (E.R.), 1949. Min. Mag., vol. 28, p. 496.Google Scholar
Schneiderhöhn, (H.), 1931. Mitt. Kais. Wilh. Inst. Eisenforschung, vol. 13, p. 109.Google Scholar
Stead, (J.E.), Ridsdale, (C.H.), and Miers, (H.A.), 1887. Journ. Chem. Soc. London, vol. 51, p. 601.CrossRefGoogle Scholar
Tilley, (C.E.), 1929. Min. Mag., vol. 22, p. 77.Google Scholar
Tilley, (C.E.), and VINCENT (H. C. G.), 1948. Ibid., vol. 28, p. 255.Google Scholar
Trömel, (G.), 1943. Stahl und Eisen, vol. 63, p. 21.Google Scholar
Trömel, (G.), 1949. Naturwissenschaften, vol. 36, p. 88.CrossRefGoogle Scholar
Van Valkenburg, (A. Jr.) and Mcmurdie, (H.F.), 1947. Journ. Res. Nat. Bur. Standards, U.S.A., vol. 38, p. 415.Google Scholar