Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T18:57:02.935Z Has data issue: false hasContentIssue false

Heating experiments on some natural titaniferous magnetites

Published online by Cambridge University Press:  14 March 2018

E. A. Vincent
Affiliation:
Department of Geology and Mineralogy, University Museum, Oxford
J. B. Wright
Affiliation:
Department of Geology and Mineralogy, University Museum, Oxford
R. Chevallier
Affiliation:
Institut de physique, Université de Nancy
Suzanne Mathieu
Affiliation:
Institut de physique, Université de Nancy

Summary

Chemically analysed samples of magnetites carrying exsolved ulvöspinel and ilmenite have been heated in vacuo at various temperatures without change in overall chemical composition and the changes occurring studied microscopically, magnetically, and by X-rays.

Magnetite with exsolution bodies of ulvöncl can be homogenized probably below 600°C.; thermomagnetic curves and microscopic textures suggest that the solvus curve is very steep at the Fe3O4 end of the Fe3O4-Fe2TiO4 series.

On heating magnetite containing ilmenite lamellae up to 950°C., some interchange of ions between the phases occurs (Fe3O4+FeTiO3 → Fe2TiO4+Fe2O3, the ilmenite lamellae taking Fe2O3 into solid solution. The accompanying host magnetite not only gains Fe2TiO4, but at the same time dissolves some FeTiO3. Above 950°C. extensive decomposition takes place, with the production of pseudobrookite, and homogenization has not been achieved. It is suggested that under magmatic conditions extensive solid solution exists in which the FeTiO3 component may be regarded as having a spinel (γ) structure; after exsolution, monotropic inversion may occur to yield a rhombohedral ferri-ilmenite (Chevallier et al., 1955), which on slow cooling changes in composition towards FeTiO3.

Magnetite with exsolution bodies of both ulvöspinel and il menite shows on heating the features of both the above binary types.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimoto, (S.), 1954. Journ. Geomagn. Geoelectr., vol. 6, no. 1, p. 1.CrossRefGoogle Scholar
Akimoto, (S.), 1955. Japan Journ. Geophys., vol. 1, no. 2, p. 1.Google Scholar
Barth, (T. F. W.) and Posnjak, (E.), 1932. Zeits. Krist. Mill. Petr., A, vol. 82, p. 325 [M.A. 5-179].Google Scholar
Basta, (E. Z.), 1953. Ph.D. Thesis, Bristol.Google Scholar
Brown, (G. M.), 1957. Min. Mug., vol. 31, p. 511.Google Scholar
Chevallier, (R.) and Pierre, (J.), 1932. Ann. Physique, ser. 10, vol. 18, p. 383.CrossRefGoogle Scholar
Chevallier, (R.) and Mathieu, (S.), 1943. Ibid., ser. 11, vol. 18, p. 258.Google Scholar
Chevallier, (R.) and Girard, (J.), 1950. Bull. Soc. Chim. France, ser. 5, vol. 17, p. 576 [M.A. 11-368].Google Scholar
Chevallier, (R.), Mathieu, (S.), and Vincent, (E. A.), 1954. Geochimica Acta, vol. 6, p. 27 [M.A. 12-499].CrossRefGoogle Scholar
Chevallier, (R.), Mathieu, (S.), and Vincent, (E. A.), 1954. Geochimica Acta, vol. 6, p. 27 [M.A. 12-499].CrossRefGoogle Scholar
Chevallier, (R.), Bolfa, (J.), and Mathieu, (S.), 1955. Bull. Soc. Franç. Min. Crist., vol. 78, pp. 307 and 365.Google Scholar
Ernst, (T.), 1943. Zeits. angew. Min., vol. 4, p. 394 [M.A. 11-198].Google Scholar
Girault, (J. P.), 1953. Naturaliste Canadien, vol. 80, p. 307 [M.A. 12-447].Google Scholar
Gorter, (E. W.), 1954. Philips Research Reports, vol. 9, pp. 295, 321, 403.Google Scholar
Kamiyama, (M.), 1929. Journ. Geol. Soc. Tokyo, vol. 36, p. 12 (in Japanese).Google Scholar
Kawai, (N.), 1956. Proc. Japan Acad., vol. 32, p. 464.Google Scholar
Kawai, (N.), Kume, (S.), and Sasajima, (S.), 1954. Ibid., vol. 30, p. 588.Google Scholar
Mason, (B.), 1943. Geol. För. Förh., vol. 65, p. 97 [M.A. 9-32].CrossRefGoogle Scholar
Mogensen, (F.), 1946. Ibid., vol. 68, p. 578 [M.A. 10-101].Google Scholar
Nagata, (T.), 1953. Nature, vol. 172, p. 850.CrossRefGoogle Scholar
Nicholls, (G. D.), 1955. Phil. Mag., suppl., vol. 4, p. 113.Google Scholar
Pouillard, (E.), 1950. Ann. Chimie, ser. 12, vol. 5, p. 164.Google Scholar
Pouillard, (E.), and Michel, (A.), 1949. Compt. Rend. Acad. Sci. Paris, Cl. Sci. math. phys., vol. 228, p. 1232.Google Scholar
Ramdohr, (P.), 1926. Neues Jahrb. Min., Abt. A, Beil.-Bd. 54, p. 320.Google Scholar
Ramdohr, (P.), 1953. Econ. Geol., vol. 48, p. 677 [M.A. 12-388].CrossRefGoogle Scholar
Ramdohr, (P.), 1955. Div Erzmineraien und ihre Verwachsungen. Akademie Verlag, Berlin.Google Scholar
Roy, (S.), 1954. Proc. Nat. Inst. Sci. India, vol. 20, p. 691.Google Scholar
Roy, (S.), 1955. Ibid., vol. 21, B, p. 222.Google Scholar
Uyeda, (S.), 1955. Journ. Geomagn. Geoelectr., vol. 7, p. 9.CrossRefGoogle Scholar
Vincent, (E. A.) and Phillips, (R.), 1954. Geochimica Acta, vol. 6, p. 1 [M.A. 12-499].CrossRefGoogle Scholar
Wilson, (H. D. B.), 1953. Econ. Geol., vol. 48, p. 370.CrossRefGoogle Scholar