Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:46:43.978Z Has data issue: false hasContentIssue false

The geochemistry of radiogenic strontium

Published online by Cambridge University Press:  14 March 2018

L. H. Ahrens*
Affiliation:
Dept. of Geology, University of the Witwatersrand, Johannesburg, Union of South Africa

Extract

The important influence that the radioactive decay of the radio-elements uranium and thorium has had on the geochemical distribution of lead is now well appreciated, but little is known about the possible geochemical implications of the radioactivity of rubidium.

Like its alkali metal homologue potassium, rubidium is β radioactive and slowly disintegrates into a stable isotope of strontium: small quantities of strontium have therefore been accumulating in various minerals since the earth's crust first consolidated. This paper will describe firstly, the abundance of radiogenic strontium in the earth's crust as a whole, and secondly, the distribution of radiogenic strontium in various minerals and rocks, in particular those which are of igneous origin.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1948

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hahn, (O.) and Walling, (E.), Zeits. Anorg. Allgem. Chem., 1938, vol. 78, p. 236. [M.A. 8–156.]Google Scholar
2. Hemmendinger, (A.) and Smythe, (W. R.), Physical Rev., 1937, vol. 51, p. 1052.Google Scholar
3. Hahn, (O.), Geol. För. Förh. Stockholm, 1944, vol. 66, p. 90.Google Scholar
4. Goldschmidt, (V. M.), Skrift. Norske Vidensk. Akad., Math.-Nat. Kl., 1938 (for 1937), no. 4, p. 29. [M.A. 7–166.]Google Scholar
5. Noddack, (I. and W.), Angew. Chem., 1936, vol. 49, p. 1. [M.A. 6–205.]Google Scholar
6. Ahrens, (L. H.), Amer. Min., 1947, vol. 32, p. 44. [M.A. 10–113.]Google Scholar
7. Goldschmidt, (V. M.), Bauer, (H.), and Witte, (H.), Nachr. Gesell. Wiss. Göttingen, Math.-Phys. Kl., Sect. IV, 1934, vol. 1, no. 4, p. 39.Google Scholar
8. Ahrens, (L. H.), Trans. Geol. Soc. South Africa. (In the press.)Google Scholar
9. Strassmann, (F.) and Walling, (E.), Ber. Deutsch. Chem. Gesell., Abt. B, 1938, vol. 71, p. 1. [M.A. 7–498.]CrossRefGoogle Scholar
10. Tolmachev, (Y. M.) and Filippov, (A. N.), Compt. Rend. Acad. Sci. URSS, 1935, vol. 1, p. 323. [M.A. 6–377.]Google Scholar
11. Ahrens, (L. H.), Trans. Geol. Soc. South Africa, 1946, vol. 48 (for 1945), p. 207.Google Scholar
12. Adamson, (O. J.), Geol. För. Förh. Stockholm, 1942, vol. 64, p. 19. [M.A. 8–353.]Google Scholar
13. Heyden, (M.) and Kopfermann, (H.), Physikal. Zeits., 1937, vol. 38, p. 960.Google Scholar
14. Brewer, (A. K.), Journ. Amer. Chem. Soc., 1938, vol. 60, p. 691.Google Scholar
15. Oftedal, (I.), Norsk Geol. Tidsskr., 1943, vol. 22 (for 1942), p. 1. [M.A. 9–278.]Google Scholar
16. Nockolds, (S. R.) and Mitchell, (R. L.), Trans. Roy. Soc. Edinburgh, 1948, vol. 61, p. 533.Google Scholar
17. Bray, (J. M.), Bull. Geol. Soc. Amer., 1942, vol. 53, p. 765. [M.A. 8–324.]CrossRefGoogle Scholar
18. Holmes, (A.), The age of the earth. London, 1937, p. 204. [M.A. 7–8.]Google Scholar
19. Noll, (W.), Chem. d. Erde, 1934, vol. 8, p. 507. [M.A. 6–87.]Google Scholar
20. Sahama, (T. G.), Compt. Rend. Soc. Géol. Finlande, 1945, no. 18, p. 16. [M.A. 9–277.]Google Scholar
21. Sahama, (T. G.), Bull. Comm. Géol. Finlande, 1945, no. 135. [M.A. 9–308.]Google Scholar
22. Landergren, (S.), Ing.-Vet.-Akad. Handlingar, Stockholm, 1943, no. 172. [M.A. 10–219.]Google Scholar