Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T00:49:03.423Z Has data issue: false hasContentIssue false

Experimental and theoretical studies of the mica polymorphs

Published online by Cambridge University Press:  14 March 2018

J. V. Smith
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., U.S.A.
H. S. Yoder Jr.
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C., U.S.A.

Summary

An experimental and theoretical study has been made in order to determine the number and the structure of the possible polymorphs and to determine the structural relations between them. The simplest structures are 1M, 2M1, 2M2, 3T, 20, and 6H polymorphs, and more complicated types can be developed. Some of the previously described polymorphs were not contained in the theoretical list and were re-examined. The 6M structure was found to be a 2M2 polymorph, the 6-layer triclinic type was found to be a 2M1 polymorph, and the 3M structure was shown to be a 3T type. The 24-layer triclinic structure could be described on a simpler 8-layer cell. This type together with a new 12-layer monoclinic structure, as well as other structures of higher periodicity, presumably consists of complex stacking and results from spiral-growth mechanism. Two extreme types of layer-disordered crystals may be built and a disorder of individual ions may also occur. Single stacking faults result in twinned crystals. A new twin relation (180° rotation about the [100] axis) has been recognized. Twenty specimens from extreme geological environments have been examined in order to evaluate the control of environment on the stacking. The type of stacking could not be attributed solely to the influence of pressure and temperature. Composition appears to play a dominant role in the type of stacking, and semi-quantitative structural arguments appear to support this contention. The influence of growth mechanism is discussed. A scheme for the identification of the mica polymorphs by X-ray powder and single-crystal methods is given.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelinckx, (S.), 1952. Compt. Rend. Acad. Sci. Paris, Vol. 234, p. 971 [M.A. 12-87].Google Scholar
Amelinckx, (S.), and Dekeyser, (W.), 1953. Comité International pour l'Étude des Argiles, Compt. Rend., p. 1 [M.A. 12-520].Google Scholar
Axelrod, (J. M.) and Grimaldi, (F. S.), 1949. Amer. Min., Vol. 34, p. 559 [M.A. 11-102].Google Scholar
Barrow, (G.), 1912. Proc. Geol. Assoc., p. 1.Google Scholar
Bragg, (W. L.), 1937. Atomic Structure of Minerals, Cornell University Press.Google Scholar
Burton, (W. K.), Cabrera, (N.), and Frank, (F. C.), 1949. Nature, Vol. 163, p. 398 [M.A. 12-312].CrossRefGoogle Scholar
Carr, (K.), Grimshaw, (R. W.), and Roberts, (A. L.), 1953. Min. Mag., Vol. 30, p. 139.Google Scholar
Clarke, (F. W.) and CHATARD( T. M.), 1884. Amer. Journ. Sci., ser. 3, Vol. 28, p. 21.Google Scholar
Courtney-Pratt, (J. S.), 1950. Research, Vol. 3, no. 1, p. 47.Google Scholar
Dekeyser, (W.) and Amelinckx, (S.), 1953. Comité International pour l'Étude des Argiles, Compt. Rend., p. 23 [M.A. 12-520].Google Scholar
Frank, (F. C.), 1952. Advances in Physics, Vol. 1, p. 9l.CrossRefGoogle Scholar
Hall, (A. L.), 1927. Trans. Geol. Soc. South Africa, Vol. 29, p. 17 [M.A. 3-396].Google Scholar
Hendricks, (S. B.) and Jefderson, (M. E.), 1939. Amer. Mill., Vol. 24, p. 729 [M.A. 7-496].Google Scholar
Jacksoin, (W. W.) and West, (J.), 1930. Zeits. Krist., Vol. 76, p. 211 [M.A. 4-467].Google Scholar
Jacksoin, (W. W.) and West, (J.), 1933. Ibid., Vol. 85, p. 160 [M.A. 5-325].Google Scholar
Keith, (M. L.) and Tuttle, (O. F.), 1952. Amer. Journ. Sci., Bowen volume, p. 203 [M.A. 12-122].Google Scholar
Kemp, (J. F.), 1897. Bull. Geol. Soc. Amer., Vol. 8, p. 169.CrossRefGoogle Scholar
Kossel, (W.), 1927. Nachr. Gesell. Wiss. Göttingen, Math.-physika]. Kl., p. 135.Google Scholar
Levinson, (A. A.), 1953. Amer. Min., Vol. 38, p. 88 [M.A. 12-98].Google Scholar
Mauguin, (C.), 1927. Compt. Rend. Acad. Sci. Paris, Vol. 185, p. 288.Google Scholar
Mauguin, (C.), 1928. Ibid., Vol. 186, p. 1131 [M.A. 4-33].Google Scholar
Pabst, (A.), 1955. Amer. Min., Vol. 40, p. 967.Google Scholar
Palache, (C.), 1935. U.S. Geol. Survey, Prof. Paper 180.Google Scholar
Pauling, (L.), 1930. Proc. Nat. Acad. Sci., Vol. 16, p. 123 [M.A. 4-368].CrossRefGoogle Scholar
Phillips, (F. C.), 1931. Min. Mag., Vol. 22, p. 482.Google Scholar
Postel, (A. W.) and Adelhelm, (W.), 1944. Amer. Min., Vol. 29, p. 279 [M.A. 9-154].Google Scholar
Ramaseshan, (S.), 1945. Proc. Indian Acad. Sci., Sect. A, Vol. 22, p. 177 [M.A. 9-189].CrossRefGoogle Scholar
Ramsdell, (L. S.), 1947. Amer. Min., Vol. 32, p. 64 [M.A. 10-202].Google Scholar
Smith, (J. V.), 1954. Acta Cryst., Vol. 7, p. 479 [M.A. 12-430].CrossRefGoogle Scholar
Stevens, (R. E.), 1938. Amer. Min., Vol. 23, p. 607 [M.A. 7-353].Google Scholar
Stranski, (I. N.), 1928. Zeits. physikal. Chem., vol. 136, p. 259.CrossRefGoogle Scholar
Stranski, (I. N.), and Kaischew, (R.), 1931. Zeits. Krist., Vol. 78, p. 373 [M.A. 5-110].Google Scholar
Tolansky, (S.), 1945. Proc. Roy. Soc., Ser. A, Vol. 184, p. 51 [M.A. 10-134].Google Scholar
Tolansky, (S.), 1946a. Ibid., Vol. 186, p. 261 [M.A. 10-135].Google Scholar
Tolansky, (S.), 1946b. Phil. Mag., ser. 7, Vol. 37, p. 390 [M.A. 10-134].Google Scholar
Tolansky, (S.), and Morris, (P. G.), 1947. Min. Mag., Vol. 28, p. 146.Google Scholar
Tuttle, (O. F.) and Keith, (M. L.), 1954. Geol. Mag., Vol. 91, p. 61 [M.A. 12-418].CrossRefGoogle Scholar
Yoder, (H. S.) and Eugster, (H. P.), 1954. Geochim. Acts, Vol. 6, p. 157 [M.A. 12-517].CrossRefGoogle Scholar
Yoder, (H. S.) and Eugster, (H. P.), 1955. Ibid., Vol. 8, p. 225.Google Scholar