Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T11:58:38.819Z Has data issue: false hasContentIssue false

The effect of composition and structural state on the rhombic section and pericline twins of plagioclase felspars

Published online by Cambridge University Press:  14 March 2018

J. V. Smith*
Affiliation:
Dept. of Mineralogy, Division of Earth Sciences, The Pennsylvania State University, University Park, Pennsylvania, U.S.A.

Summary

The position of the rhombic section of plagioclase felspars, as calculated from the measured cell dimensions, has been shown to vary with the structural state, the variation from high- to low-temperature forms being most pronounced for albite. The theoretical composition plane of pericline twins is the rhombic section. If the structural state or the composition of the felspar changes after twinning has occurred, the cell dimensions and hence the rhombic section will change; however, the composition plane of the pericline twin will probably remain unchanged unless recrystallization occurs, or perhaps if the felspar is subjected to strong stress. Thus the observed pericline composition plane need not coincide with the rhombic section. Comparison of observed composition planes with the corresponding calculated rhombie sections shows that some of them do indeed differ and the differences have been used to provide information on the changes occurring subsequent to the establishment of the pericline twins. The interpretation is complicated by the occurrence of the acline-A twin, whose composition plane is {001}, for the rhombie section of plagioclase felspars from An0 to An60 may coincide with {001} if the structural state of inversion has a particular value. When the observed composition would agree with both pericline and acline-A twinning, the new term b-axis twin has been used.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, (C. T.), 1936. Mem. Geol. Soc. India, Vol. 48, pt. 2, p. 121 [M.A. 7-21].Google Scholar
Barth, (T. F. W.), 1928. Zeits. Krist., Vol. 68, p. 616 [M.A. 4-37].Google Scholar
Bradley, (O.), 1953. Min. Mag., Vol. 30, p. 227.Google Scholar
Cole, (W. F.), SöRum, (H.), and Taylor, (W. H.), 1951. Acta Cryst., Vol. 4, p. 20 [M.A. 11-427].CrossRefGoogle Scholar
Crawford, (A. L.), 1926. Amer. Min., vol. 11, p. 239 [M.A. 3-379].Google Scholar
Des Cloizeaux, (A.), 1862. Man. de Min., p. 318.Google Scholar
Dolalc-Mantuani, (L.), 1952. Amer. Min., Vol. 37, p. 492 [M.A. 12-25].Google Scholar
Fels, (G.), 1902. Zeits. Kryst. Min., Vol. 37, p. 450.Google Scholar
Gay, (P.), 1953. Min. Mag., Vol. 30, p. 169.Google Scholar
Gay, (P.), 1954. Ibid., Vol. 30, p. 428.Google Scholar
Gay, (P.), and Smith, (J. V.), 1955. Acta Cryst., Vol. 8, p. 64.Google Scholar
Glinka, (S.), 1889. [Russ. Bergjournal, 1889]; abstr, in Zeits. Kryst. Min. 1894, Vol. 22, p. 63.Google Scholar
Glinka, (S.) гпинка, (C. Ф.) 1919. [Cбopник Mин. каб. Mocков. уинв., 1917 r. (Collected papers, Min. Cabinet, Univ. Moscow for 1917), p. 17]; abstr, in M.A. 2-64.Google Scholar
Gysin, (M.), 1925. Schweiz. Min. Petr. Mitt., Vol. 5, p. 128 [M.A. 3-520].Google Scholar
Hermann, (E.), 1924. Zeits. Krist., Vol. 59, p. 513 [M.A. 3-519].Google Scholar
Kaaden, (G. Van Der), 1951. Thesis, Utrecht [M.A. 11-282].Google Scholar
Kratzert, (J.), 1921. Zeits. Krist., Vol. 56, p. 465 [M.A. 1-281].Google Scholar
Krebs, (B.), 1921. Ibid., p. 386 [M.A. 1-281].CrossRefGoogle Scholar
Laves, (F.), 1955. Journ. Geol., Chicago, Vol. 62, p. 409 [M.A. 12-527].Google Scholar
Lewis, (J.), 1914. Min. Mag., Vol. 17, p. 178.Google Scholar
LundegåRdh, (P. H.), 1941. Bull. Geol. Inst. Uppsala, Vol. 28, p. 415 [M.A. 9-149].Google Scholar
Mackenzie, (W. S.), 1952. Amer. Journ. Sci., Bowen vol., p. 319 [M.A. 12-135].Google Scholar
Mackenzie, (W. S.), 1956. Min. Mag., Vol. 31, p. 41.Google Scholar
Mackenzie, (W. S.), and Smith, (J. V.), 1955. Amer. Min., Vol. 40, p. 707.Google Scholar
MüGge, (O.), 1930. Zeits. Krist., Vol. 75, p. 337 [M.A. 4-512].Google Scholar
Penta, (F.), 1933. Schweiz. Min. Petr. Mitt., Vol. 13, p. 187.Google Scholar
Phillips, (F. C.), 1929. Min, Mag., Vol. 22, p. 225.Google Scholar
Rath, (G. vom), 1869. Ann. Phys. Chem. (Poggendorff), Vol. 138, p. 464.Google Scholar
Rath, (G. vom), 1876. Monatsber. Akad. Wiss. Berlin, p. 147.Google Scholar
Rath, (G. vom), 1886. [Festschr. Verein Naturkunde Cassel]; abstr, in Zeits. Kryst. Min., 1887, Vol. 12, p. 538.Google Scholar
Schmidt, (E.), 1915. Chemie der Erde, Vol. 1, p. 351 [M.A. 1-390].Google Scholar
Schuster, (M.), 1880. Tschermaks Min. Petr. Mitt., Vol. 3, p. 117.Google Scholar
Smith, (J. V.), 1956. Min. Mag., Vol. 31, p. 47.Google Scholar
Smith, (J. V.), and Gay, (P.), 1958. Ibid., Vol. 31, p. 744.Google Scholar
Smith, (W. Campbell), 1928. Ibid., Vol. 21, p. 543.Google Scholar
Story-Maskelyne, (N.), 1895. Crystallography, Oxford, p. 382.Google Scholar