Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:14:22.552Z Has data issue: false hasContentIssue false

The chemistry and mineralogy of the olivine nodules of Calton Hill, Derbyshire

Published online by Cambridge University Press:  14 March 2018

S. el D. Hamad*
Affiliation:
Geology Department, University of Manchester

Summary

Chemical analyses, optical data, and cell parameters are given for olivine (Fo90·3 and Fo91·4), orthopyroxene (Ca1·5Mg89·0Fe9·5 and Ca9·8Mg88·6Fe10·6), clinopyroxene (Ca39·6Mg55·8Fe4·6), and chromian spinel from olivine nodules from the Carboniferous basalt of Calton Hill, Derbyshire. Chemical and modal analyses of the nodules and of their host rock are also presented. The distribution of Mg and Fe in the coexisting pyroxenes is fairly similar to that observed by Ross, Foster, and Myers (1954) but differs slightly in that the extension of the pyroxene tie-line intersects the Ca-Mg side of the Ca-Mg-Fe triangle. The clinopyroxene is a normal augite rather than the hydrous augite previously reported (Tomkeieff, 1928). The high chromium content of the spinel and clinopyroxene contrasts with the low value for this element in the host rock, suggesting that these minerals are not differentiates of the basaltic magma: the nodules are considered to represent fragments from a deep-seated peridotite.

Type
Research Article
Copyright
Copyright © 1963, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold-Bemrose, (H.H.), 1910. On olivine nodules in the basalt of Calton Hill, Derbyshire. Geol. Mag., decade 5, vol. 1, p. 1.Google Scholar
Bowen, (N.L.), 1928. Evolution of the igneous rocks. Princeton.Google Scholar
Brothers, (R.N.), 1960. Olivine nodules from New Zealand. Report 21st Internat. Geol. Congress, Part Xiii, p. 68.[M.A. 18-62].Google Scholar
Brown, (G.M.), 1961. Co-existing pyroxenes in igneous assemblages: a revaluation of the existing data on tie-line orientations. Geol. Mag., vol. 1, p. 333.Google Scholar
Deer, (W.A.) and Wager, (L.R.), 1939. Olivines from the Skaergaard intrusion, Kangerdlugssuak, East Greenland. Amer. Min., vol. 1, p. 18.Google Scholar
De Vore, (G.W.), 1957. The association of strongly polarizing cations with weakly polarizing cations as a major influence in element distribution, mineral composition, and crystal growth. Journ. Geol., vol. 1, p. 178.Google Scholar
Ernst, (T.), 1936. Der Melilith-Basalt des Westherges bei Hofgeismar nSrdlich yon Kassel, ein Assimilationsprodukt ultrabasischer Gesteine. Chemie der Erde, vol. 1, p. 631.Google Scholar
Frechen, (J.), 1948. Die Genese der Olivinausscheidungen Von Dreiser Weiher (Eifel) und Finkenberg (Siebengebirge). Neues Jahrb. Min. Abt. A, vol. 1, p. 317.[M.A. 11-62].Google Scholar
Heritsch, (F.), 1908. Ober einige Einschliisse und vulkanische Bomben yon Kapfenstein in Oststeiermark. Centr. Min., p. 297.Google Scholar
Hess, (H.H.), 1941. Pyroxenes of common mafic magmas. Amer. Min., vol. 1, part l, p. 515. part 2, p. 573.Google Scholar
Howie, (R.A.), 1955. Geochemistry of the charnockite series of Madras, India. Trans. Roy. Soc. Edinb., vol. 1, p. 725.Google Scholar
Jackson, (E.D.), 1960. X-ray determinative curve for natural olivine of composition Fo80_90. U.S. Geol. Surv. Professional Paper no. 400-B, p. B 432.Google Scholar
Kretz, (R.), 1961. Some applications of thermodynamics to co-existing minerals of variable composition. Journ. Geol., vol. 1, p. 361.Google Scholar
Muir, (I.D.) and Tilley, (C.E.), 1958. The composition of co-existing pyroxenes in metamorphic assemblages. Geol. Mug., vol. 1, p. 403.Google Scholar
O'Hara, (M.J.), 1960. Co-existing pyroxenes in metamorphic rocks. Geol. Mug., vol. 1, p. 498.Google Scholar
Rafter, (T.A.), 1950. Sodium peroxide decomposition of minerals in platinium vessels. Analyst, vol. 1, p. 485.Google Scholar
Rambera, (H.) and De Vore, (G.), 1951. Distribution of Fe2+ and Mg2+ in coexisting olivines and pyroxenes. Journ. Geol., vol. 1, p. 193.Google Scholar
Ross, (C.S.), Foster, (M.D.), and Myers, (A.T.), 1954. Origin of dunites and of olivine-rich inclusions in basaltic rocks. Amer. Min., vol. 1, p. 693.Google Scholar
Sandell, (E.B.), 1950. Colorimetric determination of traces of metals. 2nd edn., Interscience N.Y.Google Scholar
[Shein, (A.V.)] ШeиH, (A.B.), 1937. Determination of ferrous oxide in chromite. [ЗaBoд. Aas. (Zavodskaya lab.), vol.1, p. 1119.]; Chem. Abstr., vol. 1, p. 1211.Google Scholar
Tomkeieref, (S.I.), 1926. On some chloritic minerals associated with the basaltic Carboniferous rocks of Derbyshire. Min. Mag., vol. 1, p. 73.Google Scholar
Tomkeieref, (S.I.), 1928. The vol.nic complex of Calton Hill, Derbyshire. Quart. Journ. Geol. Soc., vol. 1, p. 703.Google Scholar
Turner, (F.J.), 1942. Preferred orientation of olivine crystals in peridotites with special reference to New Zealand examples. Trans. Roy. Soc. New Zealand, vol. 1, part 3, p. 280.Google Scholar
Yoder, (H.S.) and Sahama, (Th. G.), 1957.Google Scholar
Yoder, (H.S.) Olivine X-ray determinative curve. Amer. Min., vol.1, p. 475.Google Scholar
Zirkel, (F.), 1904. Uber Urausscheidungen in rheinischen Basalten: Abhandl. K6nig. Sachs. Ges. Wiss., Math.-phys. Kl., vol. 1, p. 103.Google Scholar