Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T12:27:10.356Z Has data issue: false hasContentIssue false

The characterization of serpentine minerals by X-ray diffraction

Published online by Cambridge University Press:  14 March 2018

E. J. W. Whittaker
Affiliation:
Ferodo Ltd., Chapel-en-le-Frith, Stockport
J. Zussman
Affiliation:
Geology Department, University of Manchester

Summary

X-ray diffraction data on serpentine minerals are discussed. There arc three structural varieties of chrysotile: ortho-chrysotile, clino-chrysotile, and para-chrysotile. Methods are described for the estimation of the proportions of the first two of these in mixed specimens, and their distribution in nature is reviewed. The variations observed in powder photographs of serpentine minerals are interpreted in accordance with this classification. The criteria proposed by Selfridge for distinguishing between chrysotile and antigorite are shown to be unreliable, but valid criteria are presented. The powder photographs also reveal the existence of a third serpentine mineral, distinct from chrysotile and antigorite, for which the name lizardite is proposed. Four samples of bastite are shown to consist of chrysotile or lizardite rather than antigorite. All the serpentine minerals examined consist either of antigorite or of one or more of the group comprising lizardite and the chrysotile varieties.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aruja, (E.), 1943. Ph.D. Thesis, Cambridge.Google Scholar
Aruja, (E.), 1944. Min. Mag., vol. 27, p. 65.Google Scholar
Brindley, (G. W.) and Knorring, (O. von), 1954. Amer. Min., vol. 39, p. 794 [M.A. 12-463].Google Scholar
Francis, (G. H.), 1956. Amer. Journ. Sei., vol. 254, p. 201.Google Scholar
Gruner, (J. W.), 1937. Amer. Min., vol. 22, p. 97 [M.A. 7-93].Google Scholar
Hargreaves, (A.) and Taylor, (W. H.), 1946. Min. Mag., vol. 27, p. 204.Google Scholar
Hess, (H. H.), Smith, (R. J.), and Dengo, (G.), 1952. Amer. Min. vol. 37, p. 68 [M.A. 12-31].Google Scholar
Jagodzinski, (H.) and Kunze, (G.), 1954. Neues Jahrb. Min., Abt. A, Monatshefte, p. 113 [M.A. 12-436].Google Scholar
Midgley, (H. G.), 1951. Min. Mag., vol. 29, p. 526.Google Scholar
Selfridge, (G. C.), 1936. Amer. Min., vol. 21, p. 463.Google Scholar
Warren, (B. E.) and Hering, (K. W.), 1941. Phys. Rev., vol. 59, p. 925.Google Scholar
Whittaker, (E. J. W.), 1952. Acta Cryst., vol. 5, p. 143 [M.A. 11-539].Google Scholar
Whittaker, (E. J. W.) 1953. Ibid., vol. 6, p. 747 [M.A. 12-337].Google Scholar
Whittaker, (E. J. W.) 1954. Ibid., vol. 7, p. 827.Google Scholar
Whittaker, (E. J. W.) 1955 a, b, c, d. Ibid., vol. 8, pp. 261, 265, 571, and 726.Google Scholar
Winchell, (A. N.), 1951. Elements of Optical Mineralogy, Part II (New York and London), p. 386 [M.A. 11-463].Google Scholar
Zussman, (J.), 1953. Nature, vol. 172, p. 126 [M.A. 12-212].Google Scholar
Zussman, (J.), 1954. Min. Mag., vol. 30, p. 498.Google Scholar
Zussman, (J.), 1956. Amer. Min., vol. 41, p. 148.Google Scholar