Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T19:32:52.172Z Has data issue: false hasContentIssue false

Phase-equilibrium studies in the system NaAlSiO4 (nepheline)–KAlSiO4 (kalsilite)–SiO2-H2O

Published online by Cambridge University Press:  14 March 2018

D. L. Hamilton
Affiliation:
Department of Geology, Manchester University
W. S. MacKenzie
Affiliation:
Department of Geology, Manchester University

Summary

Phase-equilibrium relations have been determined at 1000 kg/cm2 water pressure for compositions within the system NaAlSi3O8-KalSi3O8-NaAlSiO4-KAlSiO4 in the area adjacent to the temperature minimum. The composition and temperature of the minimum are Ne50Ks19Qz31 and 750° ± 7° C respectively. The compositions of 102 plutonic rocks and 122 extrusive rocks, from Washington's tables, that carry 80% or more of normative Ab + Or + Ne have been plotted; the areas of high density show a marked similarity to the positions of the low-temperature regions of the synthetic system and suggest that many undersaturated rocks are derived by fractional crystallization from a trachytic magma.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowen, N.L., 1915. Amer. Journ. Sci., ser. 4, vol. 39, p. 175.Google Scholar
Bowen, N.L., 1928. The evolution of igneous rocks. Princeton Univ. Press.Google Scholar
Bowen, N.L., 1937. Anmr. Journ. Sci., ser. 5, vol. 33, p. 1.Google Scholar
Bowen, N.L., 1945. Ibid., Daly vol., p. 75.Google Scholar
Bowen, N.L., and Tuttle, O.F., 1950. Journ. Geol., vol. 58, p. 489.Google Scholar
Carmichael, I.S.E. , 1963. Quart. Journ. Geol. Soc. London, vol. 119, p. 95.CrossRefGoogle Scholar
Bowen, N.L., and Mackenzie, W.S., 1963. Amer. Journ. Sci., vol. 261, p. 382.Google Scholar
Goransen, R.W., 1931. Ibid., ser. 5, vol. 22, p. 481.Google Scholar
Hamilton, D.L., 1961. Journ. Geol., vol. 69, p. 321.CrossRefGoogle Scholar
Hamilton, D.L., and Mackenzie, W.S., 1960. Journ. Petrology, vol. 1, p. 56.CrossRefGoogle Scholar
King, B.C. and Sutherland, D.S., 1960. Science Progress, Pt. I, p. 298. Pt. II, p. 504. Pt. Iii, p. 709.Google Scholar
Orville, P.M., 1958. Feldspar investigations. Ann. Rep. Dir. Geophy. Lab. Carnegie Inst. Washington, p. 206.Google Scholar
Osborn, E.F. and Schamer, J.F., 1941. Amer. Journ. Sci., vol. 239, p. 715.Google Scholar
Roy, R., 1956. Journ. Amer. Ceram. Soc., vol. 39, 10. 145.Google Scholar
Schairer, J.F., 1950. Journ. Geol., vol. 58, p. 512.CrossRefGoogle Scholar
Schairer, J.F., and Bowen, N. L., 1935. Trans. Amer. Geophys. Union, 16th Ann. Meeting, p. 325.Google Scholar
Smith, F.G., 1962. Physical Geochemistry. Addison-Wesley Publishing Co., Inc., Reading, Mass.Google Scholar
Tilley, C.E., 1958. Quart. Journ. Geol. Soc. London, vol. 103, p. 323.Google Scholar
Tuttle, O.F., 1949. Geol. Soc. Amer. Bull., vol. 60, p. 1727.Google Scholar
Tuttle, O.F., and Bowen, N.L., 1958. Geol. Soc. America, Memoir 74.Google Scholar
Washington, H.S., 1917. U.S. Geol. Survey, Professional Paper, 99.Google Scholar