Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:57:50.075Z Has data issue: false hasContentIssue false

Intergrowths in ilmenite of the beach sands of Kerala

Published online by Cambridge University Press:  14 March 2018

N. K. Rao
Affiliation:
Atomic Energy Establishment, Trombay, Bombay, India
G. V. U. Rao
Affiliation:
Atomic Energy Establishment, Trombay, Bombay, India

Summary

A detailed study of ilmenite concentrates from Chavara and Manaalakurichi deposits has brought to light several interesting textures traceable to exsolution, eutectic crystallization, and replacement and alteration. Magnetite-ilmenite, magnetite-ilmenite-picotite, ilmenite-picotite, ilmenite-hematite, and ilmenite-rutile exhibit exsolution intergrowths. Part of the ilmenite seems to have been formed either by oxidation of ulvöspinel or from a cubic phase of ilmenite by monotropic inversion. Some of the ilmenite-hematite intergrowths display either an emulsoid or a triangular type of texture. Subgraphic intergrowth is observed between ilmenite-magnetite and ilmenite-rutile, suggesting an eutectic relationship between them.

Magnetite-hematite, magnetite-goethite, and magnetite-maghemite intergrowths are the result of alteration of magnetite. Sphene also partly replaces some ilmenite grains.

The proportion of ilmenite grains with and without intergrowths and the probable origin of the intergrowths and their effect on the marketability of ilmenite concentrates are discussed in the paper.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, (S. W.), Cameron, (E. N.), Spedder, (H. R.), and Weege, (R. J.), 1956. Econ. Geol., vol. 51, p. 263.Google Scholar
Berry, (L. G.) and Mason, (B.), 1959. Mineralogy. (Modern Asia Editions.)Google Scholar
Dunn, (J. A.), 1937. Mem. Geol. Surv. India, vol. 69, 10t. 1, p. 214.Google Scholar
Edwards, (A. B.), 1954. Textures of the ore minerals and their significance. Australian Inst. Min. Met.Google Scholar
Evrard, (P.), 1949. Econ. Geol., vol. 44, p. 210.Google Scholar
Hier, (K.), 1956. Amer. Journ. Sci., vol. 254, p. 506.Google Scholar
Ingerson, (E.), 1955. Econ. Geol., vol. 50, p. 341.Google Scholar
Mukherjee, (S.), 1961. Quart. Journ. Geol. Min. Met. Soc. India, vol. 33, p. 191.Google Scholar
Nichollas, (P.), 1955. Phil. Mag., Suppl., vol. 4, p. 113.Google Scholar
Ramdohr, (P.), 1953. Econ. Geol., vol. 48, p. 677.Google Scholar
Rankama, (K.) and SAHAMA (Th. G.), 1950. Geochemistry. (Univ. Chicago Press.)Google Scholar
Ringwood, (A. E.), 1955. Geochimica Acta, vol. 7, p. 189.Google Scholar
Sraw, (D. M.), 1953. Journ. Geol., vol. 61, p. 142.Google Scholar
Verhoogen, (J.), 1962. Ibid., vol. 70, p. 168.Google Scholar
Vincent, (E. A.), 1960. Neues Jahrb. Min., Abh., vol. 94, p. 993.Google Scholar
Vincent, (E. A.) and Phillips, (R.), 1954. Geoehimica Acta, vol. 6, p. 1.CrossRefGoogle Scholar
Vincent, (E. A.), Wright, (J. B.), Chevallier, (n.), and Mathieu, (S.), 1957. Min. Mag., vol. 31, p. 624.Google Scholar
Wright, (J. B.), 1959. Ibid., vol. 32, p. 32.Google Scholar
Wright, (J. B.), 1961. Ibid., p. 778.Google Scholar