The high-temperature behaviour of beryl melts and glasses
Published online by Cambridge University Press: 14 March 2018
Summary
The course of all crystalline structural changes undergone by the mineral beryl, its melt and glass, has been followed as a function of widely differing but accurately known thermal history. Non-equilibrium ordering processes have been characterized by new techniques in high-temperature microscopy.
The relative influence that beryllium and aluminium ions exert on the phase changes has been established by studies on synthetic melts and glasses representing hypothetical beryls of differing ratios of Be2+:Al3+ ions.
The dynamic changes between the oxide and orthosilicate structures into which the systems reconstitute include the formation of a metastable hybrid beryllium aluminium silicate, which is viewed as a beryllium-containing mullite. The crystallochemical changes have been interpreted in terms of a structural model of the melts and glasses that is shown to be consistent with the ordering effects predicted from the field strengths of the cations.
- Type
- Research Article
- Information
- Mineralogical magazine and journal of the Mineralogical Society , Volume 35 , Issue 270 , June 1965 , pp. 250 - 276
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1965
References
page 250 note 1 Gentile, A. L., Cripe, D. M., and Andres, F. H., Amer. Min., 1963, vol. 48, p. 940.Google Scholar
page 250 note 2 Van Valkenburg, A. and Weir, C. E., Bull. Geol. Soc. Amer., 1957, vol. 68, p. 1808.Google Scholar
page 251 note 1 C. B. Sawyer and B. R. F. Kjellgren, U.S. Pat. 1823864, 1931 ; 2018473, 1935; 2092621, 1937.
page 251 note 2 Mercer, R. A. and Miller, R. P., Journ. Sci. Instr., 1963, vol. 40, p. 352.CrossRefGoogle Scholar
page 251 note 3 Mercer, R. A. and Miller, R. P., Nature, 1963, vol. 197, p. 683.CrossRefGoogle Scholar
page 251 note 4 Welch, J. H., Journ. Sci. Instr., 1954, vol. 31, p. 458.CrossRefGoogle Scholar
page 252 note 1 Mercer, R. A. and Miller, R. P., Journ. Sci. Instr., 1963, vol. 40, p. 352.CrossRefGoogle Scholar
page 272 note 1 Dietzel, A., Zeitschr. Elektrochem., 1942, vol. 48, p. 9.Google Scholar
page 272 note 2 J. O'M. Bockris, Mackenzie, J. D., and Kitchener, J. A., Trans. Faraday Soc., 1955, vol. 51, p. 1734 Google Scholar; J. O'M. Bockris, Kitchener, J. A., and Ignatowicz, S., and Tomlinson, J. W., ibid., 1952, vol. 48, p. 75 Google Scholar; J. O'M. Boekris, J. A. Kitehener, and A. E. Davis, ibid., p. 536 ; Tomlinson, J. W., Heynes, M. S. R., and Boekris, J. O'M., ibid., 1958, vol. 54, p. 1822.Google Scholar
page 272 note 3 [Pobedimskaya, E. A. and Belov, N. V.], CCCP (Compt. rend. Aead. Sci. URSS), 1959, vol. 129, p. 900.Google Scholar
page 272 note 4 [Belov, N. V. and Tarkhova, T. N.], ibid., 1949, vol. 69, p. 365 Google Scholar; Belov, N. V., Journ. struktr, chem. (USSR) (translation of ), 1960, vol. 1, p. 35.CrossRefGoogle Scholar
page 272 note 5 Hamburger, G. E. and Buerger, M. J., Amer. Min., 1948, vol. 33, p. 532.Google Scholar
page 272 note 6 W. L. Bragg, The Structure of the Silicates, Leipzig, 1932.
page 373 note 1 Modern Aspects of the Vitreou~ State, edited by J. D. Mackenzie, London, 1960, vol. 1, p. 63.
page 373 note 2 F. D. Richardson, Chem. and Ind., 1961, 29 July, p. 1132.
page 373 note 3 Glasser, F. P., Warshaw, I., and Roy, R.. Phys. and Chem. of Glasses, 1960, vol. 1, p. 39.Google Scholar
- 17
- Cited by