Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T01:04:24.807Z Has data issue: false hasContentIssue false

Goyazite and florencite from two African carbonatites

Published online by Cambridge University Press:  14 March 2018

Duncan McKie*
Affiliation:
Department of Mineralogy and Petrology, Downing Place, Cambridge

Summary

Florencite with ω 1·653, εd 1·661, G 3·457, a 6·971 ± 0·004 Å, c 16·42±0·13 Å, and rhombohedral unit-cell contents Sr0·42Ce0·52Ca0·14Al2·83(PO4)1·77(SO4)0·10 F0·41(OH)5·24(H2O)0·85 occurs in the Kangankunde carbonatite in Nyasaland, and goyazite with G 3·386, a 6·982±0·001 Å, c 16·54±0·02 Å, and rhombohedral unit-cell contents Ba0·05Sr0·50Ce0·41Ca0·08A2·78(PO4)1·62(SO4)0·19F0·30(OH)5·30(H2O)1·18 on the Wigu carbonatite in Tanganyika. Hydrothermal decomposition experiments in the Wigu material indicate stability below 535 ± 10 °C at pH2O 200 bars and 565 ± 10°C at pH2O 2500 bars ; both minerals exhibit endothermic peaks at 630°C in differential thermal analyses. The crystal chemistry of the goyazite series is discussed in the light of the two new analyses and of newly determined unit-cell dimensions for four other members of the goyazite series. Goyazite, florencite, and gorceixite appear to have crystallized during late-stage replacement processes or under supergene conditions in carbonatites.

Type
Research Article
Copyright
Copyright © 1962, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akrens, (L. It.), 1952.Geochimica Acta, vol. 2, p. 155.CrossRefGoogle Scholar
Anon., [E. H. Beard], 1941. Bull. Imp. Inst. London, vol. 39, p. 160.Google Scholar
Coetzee, (G.L.) and Edwards, (C.B.), 1959.Trans. Geol. Soc. South Africa, vol. 62, p. 373.Google Scholar
Deans, (T.), 1959. Analyses of rare earth ores from African carbonatite complexes. Unpubl. Rept., Overseas Geol. Surv., London.Google Scholar
Dixey, (F.), Smith, (W.C.), and Bisset, (C.B.), 1937. Geol. Surv. Iqyasaland, Mem. 5.Google Scholar
Elberty, (W.T.) and Greenberc. (S. S.), 1960.Bull. Geol. Soc. America, vol. 71, p. 1857.Google Scholar
Fisher, (D.J.), 1958.Amer. Min., vol. 43, p. 181.Google Scholar
Garson, (M.), 1957. Geol. Surv. Nyasaland, Ann. Rept. for 1956, p. 7.Google Scholar
Goldschmidt, (V.M.), Hauptmann, (H.), and Peters, (C.), 1933.Naturwiss., vol. 21, p. 362.CrossRefGoogle Scholar
Gossner, (B.), 1937.Zeits. Krist., vol. 96, p. 488.Google Scholar
Hendricks, (S.B.), 1937.Amer. Min., vol. 22, p. 773.Google Scholar
James, (T.C.), 1958.Rec. Geol. Surv. Tanganyika, vol. 6, p. 45.Google Scholar
Junner, (N.R.) and James, (W.T.), 1957. Bull. Geol. Surv. Gold Coast, no. 15. [Kuzmenko, (V.)] ҠyɜMeHK0 (B.), 1940. [Acad. Sei. U.S.S.R., Rept. no. 3, p. 38., quoted by Olson et al.,1954, p. 65.Google Scholar
Milton, (C.), Axelrod, (J.M.), Cakron, (M.K.), and Mac:Neil, (F.S.), 1958. Amer. Min., vol. 43, p. 688.Google Scholar
Moss, (A.A.), 1958.Min. Mag., vol. 31, p. 884.Google Scholar
Murata, (K.J.), Rose, (H.J.), Carkon, (M.K.), and Glass, (J.J.), 1957.Geochimica Acta, vol. l l , 10. 141.Google Scholar
Olson, (J.C.), Shawe, (D.R.), Pray, (L.C.), and S∼Arp, (W.M.), 1954. U.S. Geol. Surv. Prof. Paper 261.Google Scholar
Pabst, (A.), 1947.Amer. Min., vol. 32, p. 16.Google Scholar
Palache, (C.), Berman, (H.), and Frondel, (C.), 1951.Dana's System of Mineralogy, 7th edn, vol. 2, Wiley, New York.Google Scholar
Ramdohr, (P.) and Thilo, (E.), 1940. Zentr. Min., Abt. A, p. 1.Google Scholar
Schaller, (W.T.), 1911.Amer. Journ. Sci., ser. 4, vol. 32, p. 359.Google Scholar
Smith, (W.C.), 1953. Bull. Brit. Mus. (Nat. Hist.), Min. vol. 1, p. 97.Google Scholar
Ygberg, (E.R.), 1945.Arkiv Kemi, Min., Geol., vol. 20, p. 1.Google Scholar