Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T06:24:44.663Z Has data issue: false hasContentIssue false

The fibrous zeolite erionite; its occurrence, unit cell, and structure

Published online by Cambridge University Press:  14 March 2018

Lloyd W. Staples
Affiliation:
University of Oregon, Eugene, Oregon, U.S.A.
J. A. Gard
Affiliation:
Dept. of Chemistry, University of Aberdeen, Scotland

Summary

The type locality for erionite has been identified and specimens compared with Eakle's original material. New determinations of the physical properties and a chemical analysis have been made. Correlation of X-ray powder and fibre rotation data with electron diffraction of single crystals has shown that the unit cell is hexagonal with a 13·26, c 15·12 Å., space-group P31c, P¯31c, P63mc, P¯62c, or P63/mmc, giving a calculated sp. Gr. of 2·07 and atomic cell contents (Ca, Mg, Na2, K2)4·5Al9Si27O72.27H2O. A structure is proposed for the aluminosilicate frame, with space-group P63/mmc, which gives satisfactory correlation between observed and calculated structure factors for the X-ray fibre rotation pattern.

Type
Research Article
Copyright
Copyright © 1959, The Mineralogical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, (R.M.), Baynham, (J.W.), Bultitude, (F.W.), and Meier, (W.M.), 1959. Journ. Chem. Soc., p. 195.CrossRefGoogle Scholar
Breck, (D.W.), Eversole, (W.G.), Milton, (R.M.), Reed, (T.B.), and Thomas, (T.L.), 1956. Journ. Amer. Chem. Soc., vol. 78, p. 5963.CrossRefGoogle Scholar
Breck, (D.W.), and Smith, (J.V.), 1959. Scientific American, vol. 44, p. 85.CrossRefGoogle Scholar
Burge, (R.E.), Munden, (H.R.), and Curling, (M.A.), 1957. Journ. Sci. Instr., vol. 34, p. 305.CrossRefGoogle Scholar
Deffeyes, (K.S.), 1959. Amer. Min., vol. 44, p. 501.Google Scholar
Dent, (L.S.), and Smith, (J.V.), 1958. Nature, vol. 181, p. 1794.CrossRefGoogle Scholar
Eakle, (A.S.), 1898. Amer. Journ. Sci., ser. 4, vol. 6, p. 66.CrossRefGoogle Scholar
Fernquist, (C.), 1937. The Mineralogist (Portland, Oregon), vol. 5, p. 18.Google Scholar
Fitzsimmons, (J.P.), 1949. Doctoral Dissertation, Univ. of Washington.Google Scholar
Gard, (J.A.), 1956.. Journ. Sci. Instr., vol. 33, p. 307.CrossRefGoogle Scholar
Gard, (J.A.), 1956.. Brit. Journ. Appl. Phys., vol. 7, p. 361.CrossRefGoogle Scholar
Haine, (M.E.), Page, (M.S.), and Garfitt, (R.G.), 1950. Journ. Appl. Phys., vol. 21, p. 173.CrossRefGoogle Scholar
Hey, (M.H.), 1932. Min. Mag., vol. 23, p. 51.CrossRefGoogle Scholar
Hey, (M.H.), 1955. An Index of Mineral Species and Varieties, 2nd edn, British Museum, London.Google Scholar
Hey, (M.H.), 1959. Min. Mag., vol. 32, p. 343.Google Scholar
Larsen, (E.S.), 1921. U.S. Geol. Surv., Bull. 679.Google Scholar
Lindberg, (M.L.), Pecora, (W.T.), and Barbosa, (A. L. DE M.), 1953. Amer. Min., vol. 38, p. 1126.Google Scholar
Lindgren, (W.), 1901. U.S. Geol. Surv., 22nd Ann. Rep., Pt. 2, p. 553.Google Scholar
Morse, (H.W.) and Donnau (J. D. H.), 1936. Amer. Min., vol. 21, p. 391.Google Scholar
Reed, (J.C.), 1937. Trans. Amer. Ge0phys. Union, Pt. I, p. 239.Google Scholar
Regnier, (J.), 1958. Ph.D. Thesis, Columbia Univ., New York; Bull. Geol. Soc. Amer., in the press.Google Scholar
Smith, (J. V.), 1954. Acta Cryst., vol. 7, p. 479.CrossRefGoogle Scholar
Strunz, (H.), 1956. l∼eues Jahrb. Min. (Monats.), vol. 11, p. 250.Google Scholar
Thugutt, (S.J.), 1948. Rocz. Polsk. Tow. Geol., vol. 18, p. 5.Google Scholar
Warren, (B.E.) and Biscoe, (J.), 1938. Journ. Amer. Cerana. Soc., vol. 21, p. 49.CrossRefGoogle Scholar
Wells, (A.F.), 1950. Structural Inorganic Chemistry, 2nd edn, Oxford University Press, London.Google Scholar