Experimental studies of apatite crystallization in parts of the system CaO-P2O5-H2O at 1000 bars
Published online by Cambridge University Press: 14 March 2018
Summary
Solid-liquid-vapour phase equilibria for the join Ca(OH)2-Ca3(PO4)2-H2O at 1000 bars are determined in the temperature range 700 to 950°C. The isobaric invariant equilibrium portlandite + hydroxyapatite → liquid on the join Ca(OH)2-Ca3(PO4)2 involves a liquid with the composition 96 wt. % Ca(OH)2, 4 wt. % Ca2(PO4)2 and occurs at 765°C. The isobaric invariant equilibrium portlandite + hydroxyapatite + vapour → liquid on the join Ca(OH)2-Ca3(PO4)2-H2O is encountered at 735°C, and involves a liquid containing 92 wt. % Ca(OH)2, 4 wt. % Ca3(PO4)2, and 4 wt. % H2O. The apatites are shown by X-ray diffraction techniques to vary in composition with changes in the bulk composition from which crystallization occurred.
The apatite liquidus is steep; apatite is the first mineral to crystallize from calcium-hydroxide-rich liquids containing as little as 4 wt. % Ca2(PO4)2 (1·8 % P2O5) at temperatures as low as 735°C in the presence of vapour at 1000 bars pressure; and rapid crystal settling of apatite was experimentally noted. These observations suggest that concentrations of apatite in carbonatites are the result of crystal accumulation from liquids relatively poor in P2O5.
- Type
- Research Article
- Information
- Mineralogical magazine and journal of the Mineralogical Society , Volume 36 , Issue 276 , December 1966 , pp. 1110 - 1122
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1966
References
- 15
- Cited by