Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T05:44:58.358Z Has data issue: false hasContentIssue false

Apatite compositions and liquidus phase relationships on the join Ca(OH)2-CaF2-Ca3(PO4)2H2O from 250 to 4000 bars

Published online by Cambridge University Press:  14 March 2018

G. M. Biggar*
Affiliation:
Grant Institute of Geology, University of Edinburgh

Summary

Phase equilibria involving solids, liquids, and vapours on the join Ca(OH)2-CaF2-Ca3(PO4)2-H2O were determined at 1000 bars. The temperatures and liquid compositions (weight %) of the isobaric invariant reactions encountered were: portlandite+fluorite → liquid, 687° C, 70 % Ca(OH)2 30 % CaF2; portlandite+fluorite+vapour → liquid, 675° C, 69% Ca(OH)2 26 % CaF2 5 % H2O; portlandite+fluorite+apatite → liquid, 675°C 73 % Ca(OH)2 24 % CaF2 3 % Ca3(PO4)2; portlandite+fluorite+apatite+vapour → liquid, 665° C, 70 % Ca(OH)2 22 % CaF2 3 % Ca3(PO4)2, 5 % H2O. The temperatures of these reactions were determined from over 400 experimental runs at selected pressures from 250 to 4000 bars. The composition of the apatite involved in the last two reactions was 60 % hydroxyapatite 40 % fluorapatite and in subsolidus regions in the presence of water, fluorapatite did not crystallize but fluorhydroxyapatite solid solutions coexisted with vapours containing up to 2·5 % hydrogen fuoride. These observations suggest that hydroxyapatite is more stable than fluorapatite at elevated temperatures and pressures and would be the composition expected to crystallize under igneous and metamorphic conditions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biggar, (G. M.), 1962. Ph.D. Thesis, University of Leeds.Google Scholar
Biggar, (G. M.), 1966. Min. Mag., vol. 35, p. lll0.Google Scholar
Davies, (K. A.), 1947. Econ. Geol., vol. 42, p. 137.Google Scholar
Von Eckermann, (H.), 1948. Sver. Geol. Undersök., Ser. Ca., no. 36, 176 pp.Google Scholar
Von Eckermann, (H.), 1961. Bull. Geol. Inst. Univ. Uppsala, vol. 40, p. 25.Google Scholar
Garson, (M. S.), 1965. Bull. Geol. Surv. Malawi, no. 15.Google Scholar
Gittins, (J.) and Tuttle, (O. F.), 1964. Amer. Journ. Sci., vol. 262, p. 66.Google Scholar
Goldschmidt, (V. M.), 1954. Geochemistry. Clarendon Press, Oxford.Google Scholar
Johhson, (R. L.), 1961. Trans. Geol. Soc. South Africa, vol. 64, p. 101.Google Scholar
Kind, (A.), 1939. Chemie der Erde, vol. 12, p. 50.Google Scholar
Mitchell, (L.), Faust, (G. T.), Hendricks, (S. B.), Reynolds, (D. S.), 1943. Amer. Min., vol. 37, p. 656.Google Scholar
Vasileva, (Z. V.) 1957. Geochemistry, vol. 8, p. 825.Google Scholar
Vlodavetz, (V. I.), 1939. Amer. Min., vol. 24, p. 279.Google Scholar
Wyllie, (P. J.) and Tuttee, (O. F.), 1960. Journ. Petrology, vol. 1, p. 1.Google Scholar