Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T17:13:04.508Z Has data issue: false hasContentIssue false

The alkali feldspars from microsyenitic dylces of southern Greenland

Published online by Cambridge University Press:  14 March 2018

H. G. Scharbert*
Affiliation:
Institute of Mineralogy and Petrography, University of Vienna, Austria

Summary

26 b-axis oscillation photographs of alkali feldspars of microsyenitic dykes of Southern Greenland are presented. The crystals are rather restricted in composition (Or42·4 to Or35·3) but are rather rich in Ca (up to 14 % An). The range of variation of the optic axial angles, 2 V 45° to 71° (exceptions up to 87°), puts the crystals between sanidine-anorthoclase cryptoperthite and orthoclase microperthite, as classified by Tuttle (1952).

Since the syenitic magma cooled down rather rapidly some peculiarities in the structural state of the alkali feldspars are to be expected. The potassium-rich phase is (nearly) monoclinic. According to the values of the reciprocal lattice angles α* and γ* the sodium-rich phases can be divided into three groups: high-temperature pericline-twinned and high-temperature albite-twinned phases, high-temperature pericline-twinned and low-temperature albite-twinned phases, and high-temperature pericline-twinned and low-temperature albite-twinned phases with nearly identical values of the reciprocal lattice angle γ*.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bondam, (J.), 1955. Medd. Gronland, vol. 135, no. 2.Google Scholar
Bowen, (N. L.) and Tuttle, (O. F.), 1950. Journ. Geol., vol. 58, p. 489.CrossRefGoogle Scholar
Carmichael, (I. S. E.) and Mackenzie, (W. S.), 1964. Min. Mag., vol. 33, p. 949.Google Scholar
Coombs, (D. S.), 1954. Ibid., vol. 30, p. 409.Google Scholar
Emeléus, (C. H.) and Smith, (J. V.), 1959. Amer. Min., vol. 44, p. 1187.Google Scholar
Laves, (F.), 1952. Journ. Geol., vol. 60, p. 549.CrossRefGoogle Scholar
Laves, (F.), 1960. Zeits. Krist., vol. 113, p. 265.CrossRefGoogle Scholar
Laves, (F.) and Soldatos, (K.), 1962. Ibid., vol. 117, p. 209.Google Scholar
Mackenzie, (W. S.) and Smith, (J. V.), 1955. Amer. Min., vol. 40, p. 707.Google Scholar
Mackenzie, (W. S.) 1956. Ibid., vol. 41, p. 405.Google Scholar
Mackenzie, (W. S.) 1962. Norsk geol. Tidskr., vol. 42, part 2, p. 72.Google Scholar
Orville, (P. M.), 1958. Carnegie Inst. Yearbook, vol. 57, p. 206.Google Scholar
Scharbert, (H. G.), 1958, 1959, 1962, 1963. Field-reports, Geol. Survey of Greenland, Copenhagen.Google Scholar
Smith, (J. V.), 1961. Amer. Min., vol. 46, p. 1489.Google Scholar
Smith, (J. V.) and Mackenzie, (W. S.), 1955. Ibid., vol. 40, p. 733.Google Scholar
Smith, (J. V.) 1958. Ibid., vol. 43, p. 872.Google Scholar
Smith, (J. V.) 1959. Ibid., vol. 44, p. 1169.Google Scholar
Soldatos, (K.), 1965. Zeits. Xrist., vol. 121, p. 317.CrossRefGoogle Scholar
Tuttle, (O. F.), 1952. Amer. Journ. Sci., Bowen volume, p. 553.Google Scholar
Tuttle, (O. F.) and Keith, (M. L.), 1954. Geol. Mag., vol. 91, p. 61.CrossRefGoogle Scholar
Upton, (B. G. J.), 1962. Medd. Gronland, vol. 169, no. 8.Google Scholar
Upton, (B. G. J.), 1964. Ibid., vol. 169, no. 2.Google Scholar
Ussing, (N. V.), 1912. Ibid., vol. 38.Google Scholar
Wegman, (C. E.), 1938. Ibid., vol 113, no. 2.Google Scholar