Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T04:26:31.316Z Has data issue: false hasContentIssue false

Emergy-based mid-point valuation of ecosystem goods andservices for life cycle impact assessment

Published online by Cambridge University Press:  10 July 2013

B. Rugani
Affiliation:
Public Research Centre Henri Tudor (CRPHT)/Resource Centre for Environmental Technologies (CRTE), 6A avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg. e-mail: [email protected]
E. Benetto
Affiliation:
Public Research Centre Henri Tudor (CRPHT)/Resource Centre for Environmental Technologies (CRTE), 6A avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg. e-mail: [email protected]
D. Arbault
Affiliation:
Public Research Centre Henri Tudor (CRPHT)/Resource Centre for Environmental Technologies (CRTE), 6A avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg. e-mail: [email protected] Université de Toulouse, INSA, UPS, INP, LISBP, 135 avenue de Rangueil, 31077 Toulouse, France INRA, UMR 792, Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France CNRS, UMR 5504, 31400 Toulouse, France
L. Tiruta-Barna
Affiliation:
Université de Toulouse, INSA, UPS, INP, LISBP, 135 avenue de Rangueil, 31077 Toulouse, France INRA, UMR 792, Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France CNRS, UMR 5504, 31400 Toulouse, France
Get access

Abstract

Ecosystem goods and services (EGSs) are of crucial importance for the economic and socialdevelopment of human communities. The well-established life cycle assessment (LCA) methodis facing a number of challenging improvements to define new Characterization factors(CFs) for life cycle impact assessment (LCIA) of EGSs. Very recently, extensive workconducted under the UNEP/SETAC Life Cycle initiative has been completed with the goal ofproviding new LCIA methods and spatially differentiated mid-point CFs for land use andland use change impacts on biodiversity and ecosystem services. However, the implementedmodels do not enable one to assess the actual damage to ecosystem functionality, and thusthe relationship among EGSs and related areas of protection (e.g. AoP of “NaturalResources”) remains undefined. This paper aims at investigating the potentialcharacterization ability of the Emergy method for LCIA of EGSs. The goal is to use theextensive libraries of Unit Emergy Values (UEVs) of primary services and resources as CFsfor LCIA to evaluate the physical contribution of EGSs in supporting life cycle processes.Having its roots in thermodynamics and systems ecology, Emergy can appraise a larger andmore diversified (than LCA) number of EGSs through a common physical denominator, i.e. thesolar emjoule or seJ, which measures the solar energy embodied in natural products. Emergythus has a typical Nature-oriented perspective, accounting for the available energy thatis used up by the natural cycles, directly and indirectly, to generate biotic and abioticresources. A library of selected UEVs (more than 100) for biophysical EGS valuation hasbeen framed including values collected from the Emergy literature and formulated on thelatest planetary baseline (i.e. 15.2E + 24 seJ/yr). Advantages and limitations for futureapplication of these values toward an LCIA mid-point impact characterization of Emergy arediscussed. UEVs may represent mid-point LCIA factors for ecological contribution analysis,enabling one to account for the memory of energy previously required to produce EGSs,which can be used as a proxy to assess the future environmental work necessary toregenerate the used EGSs. However, the added value of Emergy for LCA is still debated,mainly because of the low accuracy and unclear meaning of the UEVs in relation to theavailability of resources. Therefore, Emergy can be conceived as a suitable physicalmeasure complementary to the economic valuations and current “user-side” tools applied inLCA.

Type
Research Article
Copyright
© EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Millennium Ecosystem Assessment (MEA 2005), http://www.millenniumassessment.org/
The Economics of Ecosystems and Biodiversity (TEEB 2010), http://www.teebweb.org/
Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Naeem, S., Limburg, K., Paruelo, J., O’Neill, R.V., Raskin, R., Sutton, P., van den Belt, M., Nature 387 (1997) 253-260
European Commission (2010), ILCD Handbook – International reference Life Cycle Data System, General guide for Life Cycle Assessment – Detailed guidance. First edition, European Commission Directorate General Joint Research Centre (JRC) Institute for Environment and Sustainability Ispra (IT)
ISO (2006), ISO 14040 International Standard. In: Environmental Management – Life Cycle Assessment – Principles and Framework, International Organisation for Standardization Geneva (CH)
European Commission (2010), ILCD Handbook – International reference Life Cycle Data System. Framework and Requirements for Life Cycle Impact Assessment Models and Indicators. First edition. European Commission Directorate General Joint Research Centre (JRC) Institute for Environment and Sustainability Ispra (IT)
Curran, M., de Baan, L., de Schryver, A., van Zelm, R., Hellweg, S., Koellner, T., Sonnemann, G., Huijbregts, M.A.J., Environ. Sci. Technol. 45 (2011) 70-79
Bösch, M.E., Hellweg, S., Huijbregts, M.A.J., Frischknecht, R., Int. J. Life Cycle Assess. 12 (2007) 181-190
Dewulf, J., Bösch, M.B., De Meester, B., Van der Vorst, G., Van Langenhove, H., Hellweg, S., Huijbregts, M.A.J., Environ. Sci. Technol. 41 (2007) 8477-8483
Rugani, B., Huijbregts, M.A.J., Mutel, C., Bastianoni, S., Hellweg, S., Environ. Sci. Technol. 45 (2011) 5426-5433
J.B. Guinée, M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, H.A. Udo de Haes, H. de Bruijn, R. van Duin, M.A.J. Huijbregts, Handbook on Life Cycle Assessment. Operational Guide to the ISO standards Kluwer Academic Publisher: Dordrecht (NL), 2002
Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R., Int. J. Life Cycle Assess. 8 (2003) 324-330
M. Hauschild, J. Potting, Spatial differentiation in life cycle impact assessment. The EDIP 2003 methodology. Environmental News No. 80 Danish Environmental Protection Agency Copenhagen (DK), 2005
M. Goedkoop, R. Heijungs, M.A.J. Huijbregts, A. de Schryver, J. Struijs, R. van Zelm, ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition Report I: Characterisation Ministerie van VROM Den Haag (NL), 2008
G. Brand, A. Scheidegger, O. Schwank, A. Braunschweig, Weighting in Ecobalances with the Ecoscarcity Method: Ecofactors 1997. Environmental Series No. 297 Swiss Federal Agency for the Environment Bern (CH), 1998
LULCIA (2008–2011) T. Koellner (Project Leader) Partners (in alphabetical order by last name): A.P. Arena, T. Beck, U. Bos, M. Brandão, B. Civit, L. Deschenes, M. Margni, L. Milà i Canals, R. Müller-Wenk, R. Saad, B. Wittstock : Operational Characterization Factors for Land use Impacts on Biodiversity and Ecosystem Services in the Life-Cycle Impact Assessment – Compatible with the Framework of the UNEP-SETAC Life Cycle Initiative (LULCIA): http://www.estis.net/sites/lcinit/default.asp?site=lcinit\&page_ id=337831BE-0C0A-4DC9-AEE5-9DECD1F082D8
de Baan, L., Alkemade, R., Koellner, T., Int. J. Life Cycle Assess. 18 (2012) 1216-1230
Müller-Wenk, R., Brandão, M., Int. J. Life Cycle Assess. 15 (2010) 172-182
Brandão, M., Milà i Canals, L., Int. J. Life Cycle Assess. 18 (2012) 1243-1252
Saad, R., Margni, M., Int. J. Life Cycle Assess. 18 (2012) 1253-1264
Koellner, T., de Baan, L., Beck, T., Brandão, M., Milà i Canals, L., Civit, B., Margni, M., Saad, R., Maia de Souza, D., Müller-Wenk, R., Int. J. Life Cycle Assess. 18 (2012) 1188-1202
Zhang, Y., Singh, S., Baral, A., Bakshi, B.R., Environ. Sci. Technol. 44 (2010) 2232-2242
The Ecoinvent database v2.2, http://www.ecoinvent.org/database/
Odum, H.T., Science 242 (1988) 1132-1139
H.T. Odum, Environmental Accounting: Emergy and Environmental Decision Making John Wiley and Sons, New York USA, 1996
F.M. Pulselli, S. Bastianoni, N. Marchettini, E. Tiezzi, The Road to Sustainability, GDP and the Future Generations, WIT Press: Southampton, UK, 2008
Pulselli, F.M., Coscieme, L., Bastianoni, S., Ecol. Modell. 222 (2011) 2924-2928
Ulgiati, S., Brown, M.T., Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 310-321
Watanabe, M.D.B., Ortega, E., Environ. Sci. Policy 14 (2011) 594-604
Odum, H.T., Odum, E.P., Ecosystems 3 (2000) 21-23
Brown, M.T., Cohen, M.J., Bardi, E., Ingwersen, W.W., Aquat. Sci. 68 (2006) 254-277
Ingwersen, W.W., J. Ind. Ecol. 15 (2011) 550-567
M. Raugei et al., Nested Emergy Analyses: Moving ahead from the spreadsheet platform. In: Brown et al. (Eds.), Emergy Synthesis 4, Center for Environmental Policy University of Florida: Gainesville FL USA, 2007
Marvuglia, A., Rugani, B., Rios, G., Pigné, Y., Benetto, E., Tiruta-Barna, L., Revue de Métallurgie 110 (2013) 87-94
Rugani, B., Benetto, E., Environ. Sci. Technol. 46 (2012) 4701-4712
Sciubba, E., Ulgiati, S., Energy 30 (2005) 1953-1988
Raugei, M., Ecol. Modell. 222 (2012) 3821-3822
H.T. Odum, Handbook of Emergy Evaluation. Folio#2. Emergy of Global Processes, Centre for Environmental Policy University of Florida: Gainesville, USA, 2000
Brown, M.T., Ulgiati, S., Ecol. Modell. 221 (2010) 2501-2508
Campbell, D.E., Environ. Monit. Assess. 51 (1998) 531-569
Pulselli, R.M., J. Environ. Manage. 91 (2010) 2349-2357
Hau, J.L., Bakshi, B.R., Ecol. Modell. 178 (2004) 215-225
Brown, M.T., Ulgiati, S., AMBIO 28 (1999) 486-493
Ulgiati, S., Zucaro, A., Franzese, P.P., Ecol. Econ. 70 (2011) 778-787
Ulgiati, S., Brown, M.T., J. Clean. Prod. 10 (2002) 335-348
Geber, U., Björklund, J., Ecol. Eng. 19 (2002) 97-117
Campbell, D.E., Northeastern Natur. 11 (1998) 355-424
Martin, J.F., Ecol. Eng. 18 (2002) 265-286
Huang, S.-L., Chen, Y.-H., Kuo, F.-Y., Wang, S.-H., Ecol. Complex. 8 (2011) 38-50
M. Montesino, Ecosystem services in emergy term: Danish energy crops. M.Sc. Thesis University of Copenhagen, DK, 2010
Cohen, M.J., Brown, M.T., Shepherd, K.D., Agric. Ecosyst. Environ. 114 (2006) 249-269
Campbell, D.E., Environ. Sci. Technol. 35 (2001) 2867-2873
Tilley, D.R., Swank, W.T., J. Environ. Manage. 69 (2003) 213-227
Odum, H.T., Doherty, S.J., Scatena, F.N., Kharecha, P.A., For. Sci. 46 (2000) 521-530
Kang, D., Park, S.S., J. Environ. Manage. 66 (2002) 293-306
Brown, M.T., McClanahan, T.R., Ecol. Modell. 91 (1996) 105-130
V. Voora, C. Thrift, Using Emergy to Value Ecosystem Goods and Services, Alberta Environment – International Institute for Sustainable Development, Winnipeg Manitoba, CA, 2010
A.A. Buenfil, Emergy Evaluation of Water, Ph.D. Dissertation University of Florida Gainesville, USA, 2001
Bastianoni, S., Campbell, D.E., Susani, L., Tiezzi, E., Ecol. Modell. 186 (2005) 212-220
M.T. Brown, M.J. Cohen, Emergy and Network Analysis, In: S.E. Jörgensen, B. Fath (Eds.), Encyclopedia of Ecology Elsevier, Amsterdam, NL, 2008
M.J. Cohen et al., Computing the Unit Emergy Value of Crustal Elements, In Brown et al. (Eds.), Emergy Synthesis 4, Center for Environmental Policy University of Florida: Gainesville FL, USA, 2007
Brown, M.T., Protano, G., Ulgiati, S., Ecol. Modell. 222 (2011) 879-887
European Reference Life Cycle Database II (ELCD), http://lca.jrc.ec.europa.eu/lcainfohub/datasetCategories.vm
J. Babiè, Emergy Analysis of the Salt Production Process at the SeèOvlje Saltpans Slovenia. In Brown et al. (Eds.), Emergy Synthesis 3, Center for Environmental Policy University of Florida: Gainesville FL, USA, 2005
M.T. Brown, R.D. Woithe, C.L. Montague, H.T. Odum, E.C. Odum, Emergy analysis perspectives of the Exxon Valdez oil spill in Prince William Sound, Alaska. Final Report to the Cousteau Society. Gainesville, FL: Center for Wetlands, University of Florida; USA, 1993, p. 114
D.E. Campbell, A revised solar transformity for tidal energy received by the earth and dissipated globally: Implications for Emergy Analysis, In Brown M.T. (Ed.), Emergy Synthesis 1, Center for Environmental Policy University of Florida: Gainesville, USA, 2000
Sciubba, E., Energy 35 (2010) 3696-3706
D.E Campbell et al., Current Technical Problems in Emergy Analysis, In Brown et al. (Eds.), Emergy Synthesis 3, Center for Environmental Policy University of Florida: Gainesville FL, USA, 2005
B.P. Weidema, C. Bauer, R. Hischier, C. Mutel, T. Nemecek, C.O. Vadenbo, G. Wernet, Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3, Ecoinvent Report 1(v3) The Ecoinvent Centre: St. Gallen, CH, 2011
Cleveland, C.J., Kaufmann, R.K., Stern, D.I., Ecol. Econ. 32 (2000) 301-317
Mansson, B.A., McGlade, J.M., Oecologia 93 (1993) 582-596
Christensen, V., Ecol. Modell. 72 (1994) 129-144
Patten, B.C., Ecol. Modell. 79 (1995) 75-84
Gattie, D.K., Kellam, N.N., Turk, H.J., Ecol. Modell. 208 (2007) 25-40
Chen, S., Fath, B.D., Chen, B., Proc. Environ. Sci. 2 (2010) 720-724