Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:23:37.443Z Has data issue: false hasContentIssue false

Beneficial effect of B on hot ductility of 20CrMnTi steel with0.05% Sn

Published online by Cambridge University Press:  04 July 2014

Hongbing Peng
Affiliation:
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China. e-mail: [email protected]
Weiqing Chen
Affiliation:
State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China. e-mail: [email protected]
Lie Chen
Affiliation:
Xining Special Steel Co. Ltd., Xining 810005, P.R. China
Dong Guo
Affiliation:
Xining Special Steel Co. Ltd., Xining 810005, P.R. China

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The beneficial effect of B on the hot ductility of 20CrMnTi steel with 0.05% Sn wasinvestigated. The results show that there is a trough in the hot ductility-temperaturecurve. With the increase in the B content, the trough shifts to a lower temperature andbecomes shallow, and the hot brittle range becomes narrow. In addition, B greatlyenhancing the hot ductility was due mainly to its suppressing the Sn segregation,retarding the austenite/ferrite deformation, accelerating the onset of dynamicrecrystallization (DRX) and promoting the intragranular nucleation of ferrite. Moreover,in the present case, adding 92 ppm B can nucleation of ferrite. Moreover, in the presentcase, adding 92 ppm B can obtain the best effect in improving the hot ductility of20CrMnTi steel with 0.05% Sn.

Type
Short Communication
Copyright
© EDP Sciences 2014

References

Garza, L.G., Van Tyne, C.J., J. Mater. Process. Tech. 159 (2005) 169
Yin, L., Sridhar, S., Metall. Mater. Trans. B 42 (2011) 1031
H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000
Salter, J.M.J., J. Iron Steel Inst. 204 (1966) 478
Mintz, B., ISIJ Int. 39 (1999) 833
Mintz, B., Yue, S., Jonas, J.J., Int. Mater. Rev. 36 (1991) 187
Mintz, B., Crowther, D.N., Int. Mater. Rev. 55 (2010) 168
Mintz, B., Wilcox, J.R., Crowther, D.N., Mater. Sci. Technol. 2 (1986) 589
Yuan, Z.X., Jia, J., Guo, A.M. et al., Acta Metall. Sin. 16 (2004) 478
Song, S., Yuan, Z., Jia, J. et al., Metall. Mater. Trans. A 34 (2003) 1611
Peng, H., Chen, W., Chen, L. et al., High Temp. Mater. Processes 33 (2014) 179
Jiguang, X., Fuming, W., Changrong, L. et al., J. Chin. Rare. Earth. 25 (2007) 278
Song, S., Guo, A., Shen, D. et al., Mat. Sci. Eng. A 360 (2003) 96
Zarandi, F., Yue, S., ISIJ Int. 46 (2006) 591
Karlsson, L., Acta Metall. 36 (1988) 25
Karlsson, L., Nordén, H., Acta Metall. 36 (1988) 13
Suzuki, S., Kuroki, K., Kobayashi, H. et al., Mater. Trans. JIM 33 (1992) 1068
Hondros, E.D., Seah, M.P., Int. Met. Rev. 22 (1977) 262
Laha, K., Kyono, J., Kishimoto, S. et al., Scripta Mater. 52 (2005) 675
M.K. Miller, P.J. Pareige, K.F. Russell, an Oak Ridge National Laboratory Report, 2001, TN.
Mej, I.A.I., Bedolla-Jacuinde, A., Maldonado, C.E.M. et al., Mat. Sci. Eng. A 528 (2011) 4468
Hannerz, N.E., Trans. Iron Steel Inst. Jpn 25 (1985) 149
Kim, S.K., Kim, N.J., Kim, J.S., Metall. Mater. Trans. A 33 (2002) 701