Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:30:06.557Z Has data issue: false hasContentIssue false

Thermodynamics of vitreous transition

Published online by Cambridge University Press:  13 March 2012

R.F. Tournier*
Affiliation:
Centre National de la Recherche Scientifique, Université Joseph Fourier, Consortium de Recherches pour l’Émergence de Technologies Avancées, B.P. 166, 38042 Grenoble Cedex 09, France. e-mail: [email protected]
Get access

Abstract

The maximum value at equilibrium of the relaxed enthalpy of some glasses is viewed as alinear function of the annealing temperature from the Kauzmann temperatureTK up to a vitreous transition temperature T*g which is not time dependent. The frozen enthalpy and entropy at T*gare determined from the specific heat difference between glass andundercooled melt which is constant between TKandT*g. The Gibbs free energy change at T*g is equal to zero. The vitreous transition is a thermodynamic transitionwithout latent heat. A model is used to describe this phenomenon. A volume energy saving εv equivalent to a complementary Laplace pressure has beenadded to the classical Gibbs free energy change for a crystal formation in a melt. Thereis a change of the Vogel–Fulcher–Tammann (VFT) temperature at T*g corresponding to a decrease of the free volume disappearancetemperature. Scaling laws linking the crystal homogeneous nucleation temperatures to T*g are used to predict the two VFT temperatures, the thermodynamic vitreoustransition induced by vitreous (super)-clusters and the frozen enthalpy and entropy at T*g only knowing T*g, the melting temperature Tmand the fusion heat ΔHm of any fragileglass-forming melt.

Type
Research Article
Copyright
© EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cernosek, Z., Holubova, J., Cernoskova, E., Liska, M.J., J. Optoel. Adv. Mater. 4 (2002) 489-503
Merzlyakov, M., Schick, C., Thermoch. Acta 380 (2001) 5-12
Berton, A., Chaussy, J., Odin, J., Rammal, R., Tournier, R., J. Phys. Lett. 43 (1982) L153-L158
Tournier, R.F., Materials 4 (2011) 869-892
Berthier, L., Biroli, G., Bouchaud, J., Cipelletti, L., Masri, D.E., L’Hôte, D., Ladieu, F., Pierno, M., Science 310 (2005) 1797-1800
Tanaka, H., Awasaki, T., Shintani, H., Watanabe, K., Nature Mater. 9 (2010) 324-331
D.T. Wu, L. Granasy, F. Spaepen, MRS Bulletin, 2004; 945-950, http://www.mrs.org/publications/bulletin
I. Gutzov, J. Schmeltzer, The vitreous state, Springer-Verlag: Berlin Germany, 1995, p. 231
R.F. Tournier, Thermodynamic and kinetic origin of vitreous transition, Proc. of BMG 8, to be published in Intermetallics
Evenson, Z., Busch, R., Acta Mater. 59 (2011) 4404-4415
Mei, J.N., Soubeyroux, J.L., Blandin, J.J., Li, J.S., Kou, H.C., Fu, H.Z., Zhou, L., J. Non-Cryst. Sol. 357 (2011) 110-115
Lu, I.R., Wilde, G., Görler, G.P., Willnecker, R., J. Non-Cryst. Sol. 250-252 (1999) 577-581
Mehl, P.M., Thermochem. Acta 272 (1996) 201-209
Fransson, A., Bäckström, G., Int. J. Thermophys. 8 (1987) 351-362
Zhang, Y., Hahn, H., J. Non-Cryst. Sol. 355 (2009) 2616-2621
Gallino, I., Shah, M.B., Busch, R., Acta Mater. 55 (2007) 1367-1376
H.B. Ke, P. Wen, W.H. Wang, Origin of the excess specific heat in metallic glass forming melts, preprint, 2011
Busch, R., Masuhr, A., Johnson, W.L., Mater. Sc. Eng. A304-306 (2001) 97-102
Angell, C.A., Rao, K.J., J. Chem. Phys. 57 (1971) 470-481
Tournier, R.F., Physica. B 392 (2007) 79-93
Tournier, R.F., Sci. Technol. Adv. Mater. 10 (2009) 014607:1-014607:12
Tournier, R.F., J. Phys. Confer. Ser. 144 (2009) 012116:1-012116:4
Vinod, C.P., Kulkarni, G.U., Rao, C.N.R., Chem. Phys. Lett. 389 (1998) 329-333
de Heer, W.A., Rev. Mod. Phys. 65 (1993) 611-676
Jiang, Q., Zhang, Z., Li, J.C., Acta Mater. 48 (2000) 4791-4795
R.F. Tournier, Expected properties of gold melt containing intrinsic nuclei, Proc. 6th Intern. Conf. Electrom. Process. Mat., EPM 2009, Ed: Forschungszentrum Dresden-Rossendorf, Germany, 2009, pp. 304-307
R.F. Tournier, Nucleation of crystallization in titanium and vitreous state in glass-forming melt, Proc. 12th World Conf. Ti 2011, to be published
Herminghaus, S., Jacobs, K., Seemann, R., Eur. Phys. J. E 5 (2001) 531-538
Schroers, J., Acta Mater. 56 (2008) 471-478
Henderson, D.W., Ast, D.G., J. Non-Cryst. Sol. 64 (1984) 43-70
Birge, N.O., Phys. Rev. B. 34 (1986) 1631-1642
Liu, R.-S., Liu, H.-R., Dong, K.-J., Hou, Z.-Y., Tian, Z.-A., Peng, P., Yu, A.-B., J. Non-Cryst. Sol. 355 (2009) 541-547
Almyras, G.A., Lekka, Ch.E., Mattern, N., Evangelakis, G.A., Scripta Mater. 62 (2010) 33-36