Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T15:23:23.874Z Has data issue: false hasContentIssue false

Sintering of ferritic and austenitic nanopowders using SparkPlasma Sintering

Published online by Cambridge University Press:  30 October 2014

B. Mouawad
Affiliation:
Université de Lyon-INSA de Lyon-MATEIS UMR CNRS 5510, 69621 Villeurbanne, France. e-mail: [email protected]
D. Fabregue
Affiliation:
Université de Lyon-INSA de Lyon-MATEIS UMR CNRS 5510, 69621 Villeurbanne, France. e-mail: [email protected]
M. Perez
Affiliation:
Université de Lyon-INSA de Lyon-MATEIS UMR CNRS 5510, 69621 Villeurbanne, France. e-mail: [email protected]
M. Blat
Affiliation:
EDF R&D Dpt. MMC, Les Renardières, 77818 Moret sur Loing, France
F. Delabrouille
Affiliation:
EDF R&D Dpt. MMC, Les Renardières, 77818 Moret sur Loing, France
C. Domain
Affiliation:
EDF R&D Dpt. MMC, Les Renardières, 77818 Moret sur Loing, France
C. Pokor
Affiliation:
EDF R&D Dpt. MMC, Les Renardières, 77818 Moret sur Loing, France
Get access

Abstract

This study aims at presenting a way to obtain nanostructured materials. Austeniticstainless steel (316L) nanopowders and ferritic/martensitic alloy steels (Fe14Cr) aresintered with the Spark Plasma Sintering (SPS) technique. This technique leads to a fullydense/nano-sized microstructure material after a short treatment. The optimal sinteringtemperature was found to be 850°C for both materials. The relationship between the Vickers Hardnessand scale of the microstructure is in good agreement with the Hall-Petch Law.

Type
Research Article
Copyright
© EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackland, G., Sci. Mag. 327 (2010) 1587 Google Scholar
Dubuisson, P., DeCarlan, Y., Garat, V., Blat, M., J. Nucl. Mater. 428 (2012) 6 Google Scholar
Boulnat, X., Perez, M., Fabrègue, D., Douillard, T., Mathon, M.H., DeCarlan, Y., Metall. Mater. Trans. A 45 (2014) 1485 Google Scholar
Sun, Q.X., Zhang, T., Wang, X.P., Fang, Q.F., Hao, T., Liu, C.S., J. Nucl. Mater. 424 (2012) 279 Google Scholar
Auger, M.A., de Castro, V., Leguey, T., Muñoz, A., Pareja, R., J. Nucl. Mater. 436 (2013) 68 Google Scholar
Pandya, S., Ramakrishna, K.S., Annamalai, A.R., Upadhyaya, A., Mater. Sci. Eng. A 556 (2012) 271 Google Scholar
Ji, C.H., Loh, N.H., Khor, K.A., Tor, S.B., Mater. Sci. Eng. A 311 (2001) 74 Google Scholar
Akhtar, F., Ali, L., Peizhong, F., Shah, J.A., J. Alloys Compd. 509 (2011) 8794 Google Scholar
Krztonìa, H., Kolesnikow, D., Paduch, J., Molend, R., Achiev, J., Mater. Manuf. Eng. 21 (2007) 73 Google Scholar
Auger, M.A., Leguey, T., MunÞoz, A., Monge, M.A., de Castro, V., Fernaìndez, P., Garceìs, G., Pareja, R., J. Nucl. Mater. 417 (2011) 213 Google Scholar
Sokovnin, O.M., Zagoskina, N.V., Theor. Found. Chem. Eng. 36 (2002) 601 Google Scholar
Landolt-Börnstein, , Groupe III Condens. Matter 26 (1990) Google Scholar
Singh, K.K., Sangal, S., Murty, G., Mater. Sci. Technol. 18 (2002) 165 Google Scholar