Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T13:42:52.508Z Has data issue: false hasContentIssue false

SEASONAL PATTERNS OF CADAVER PERSISTENCE AND SPORULATION BY THE FUNGAL PATHOGEN ENTOMOPHAGA GRYLLI (FRESENIUS) BATKO (ENTOMOPHTHORALES: ENTOMOPHTHORACEAE) INFECTING CAMNULA PELLUCIDA (SCUDDER) (ORTHOPTERA: ACRIDIDAE)

Published online by Cambridge University Press:  31 May 2012

A.J. Sawyer
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Plant Protection Research Unit, U.S. Plant, Soil & Nutrition Laboratory, Ithaca, New York, USA 14853
M.E. Ramos
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Plant Protection Research Unit, U.S. Plant, Soil & Nutrition Laboratory, Ithaca, New York, USA 14853
T.J. Poprawski
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Plant Protection Research Unit, U.S. Plant, Soil & Nutrition Laboratory, Ithaca, New York, USA 14853
R.S. Soper
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Plant Protection Research Unit, U.S. Plant, Soil & Nutrition Laboratory, Ithaca, New York, USA 14853
R.I. Carruthers
Affiliation:
U.S. Department of Agriculture, Agricultural Research Service, Plant Protection Research Unit, U.S. Plant, Soil & Nutrition Laboratory, Ithaca, New York, USA 14853
Get access

Abstract

Entomophaga grylli (Fresenius) Batko (North American pathotype 1) is a fungal pathogen of the clearwinged grasshopper, Camnula pellucida (Scudder). We present results from a field experiment conducted in Arizona in 1984, designed to investigate factors associated with seasonal patterns of cadaver persistence and sporulation by E. grylli. Rangeland plots at two sites were monitored daily for 8 weeks for the appearance of new cadavers of diseased grasshoppers during a natural epizootic. Cadavers were individually marked and revisited on subsequent days, when it was noted whether or not conidial sporulation was underway. Environmental variables were recorded by electronic data loggers. Daily probabilities of cadaver disappearance and fungal sporulation were analysed in relation to site, date, and various measures of cadaver status, sporulation history, and environmental variables by logistic regression analysis. The average daily rate of cadaver disappearance was 0.22, yielding an expected time to 50% disappearance of 2.8 days. The environmental factor most significantly associated with cadaver disappearance was rainfall, and the most important host factor was age of the cadaver. The probability that conidia would be discharged from a cadaver over the next 24 h was most dependent on whether or not conidial sporulation was underway already. This probably reflects a state of readiness for sporulation on the part of the fungus. Although the probability of sporulation declined with increasing age of a cadaver, high rates of sporulation were predicted under conditions of prolonged leaf wetness and high humidity at night, regardless of age of the cadaver. These results, together with the observation that in some cadavers sequences of sporulation were interspersed with periods of no sporulation, suggest that E. grylli may undergo cycles of dehydration and rehydration, in which conidial production is interrupted and then resumes in response to changing environmental conditions.

Résumé

Entomophaga grylli (Fresenius) Batko (pathotype nord américain 1) est un cryptogame pathogène du criquet pellucide, Camnula pellucida (Scudder). Nous présentons les résultats d'une expérience menée au champ en Arizona en 1984, expérience visant à examiner les facteurs associés au modèle saisonnier de la persistance des cadavres mycosés et à celui de la sporulation d'E. grylli. L'apparition quotidienne de nouveaux cadavres de criquets infectés fut suivie pendant 8 semaines lors d'une épizootie naturelle dans des parcelles de paturâge situées en deux sites. Les cadavres furent marqués individuellement et observés durant les jours subséquents afin d'établir si la sporulation était en cours ou non. Les variables du milieu environnant furent enregistrées au moyen d'un système électronique d'acquisition de données. La probabilité quotidienne de la disparition des cadavres et de celle de la cessation de la sporulation du cryptogame en relation avec le site, la date, et diverses mesures de l'état des cadavres, de l'historique de la sporulation et des variables du milieu environnant furent analysées par la régression logistique. Le taux de disparition des cadavres moyen quotidien fut 0,22, produisant un temps de disparition de 50% attendu de 2,8 jours. La variable du milieu environnant la plus significativement associée à la disparition des cadavres fut la pluviosité alors que la variable hôte la plus importante fut l'âge du cadavre. La probabilité que les conidies seraient projetées à partir d'un cadavre durant les prochaines 24 h fut surtout dépendante du fait que la sporulation était déjà en cours. Ceci reflète probablement un état de préparation à la sporulation de la part du cryptogame. Bien que la probabilité de la sporulation déclina avec le vieillissement d'un cadavre, des taux de sporulation élevés furent prédits sous conditions d'humectation du feuillage prolongée et d'humidité nocturne élevée, peu importe l'âge du cadavre. Ces résultats, ajoutés au fait que chez certains cadavres les séquences de la sporulation étaient parsemées de périodes sans sporulation, suggèrent qu'E. grylli peut subir des cycles de déshydratation et de réhydratation durant lesquels la production de conidies est interrompue et alors réassumée en réponse aux conditions changeantes du milieu environnant.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Mention of a commercial or proprietary product does not constitute an endorsement or a recommendation for its use by the USDA.

2

Current address: USDA-APHIS-PPQ, Hawaii Plant Protection Center, PO Box 1040, Waimanalo, Hawaii, USA 96795.

3

Current address: USDA-ARS Subtropical Agriculture Research Laboratory, Biological Pest Control Research and Texas A&M Agricultural Experimental Station, 2413 East Hwy 83, Weslaco, Texas, USA 78596.

4

Current address: USDA-ARS, International Activities, Building 005, Beltsville Agricultural Resetrch Center West, Beltsville, Maryland, USA 20705.

5

Current address: USDA-ARS, National Program Staff, Building 005, Beltsville Agricultural Research Center-West, Beltsville, Maryland, USA 20705.

References

Baker, R.J. and Nelder, J.A.. 1978. The Generalized Linear Interactive Modelling (GLIM) System, Release 3. Royal Statistical Society, Numerical Algorithms Group, Oxford, England.Google Scholar
Belovsky, G.E. and Slade, J.B.. 1993. The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68(2): 193201.Google Scholar
Belovsky, G.E., Slade, J.B. and Stockhoff, B.A.. 1990. Susceptibility to predation for different grasshoppers, an experimental study. Ecology 71(2): 624634.Google Scholar
Bock, C.E., Bock, J.H. and Grant, M.C.. 1992. Effects of bird predation on grasshopper densities in an Arizona grassland. Ecology 73(5): 17061717.Google Scholar
Brady, B.L.K. 1979. Entomophthora grylli. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 606. Commonwealth Mycological Institute, Commonwealth Agricultural Bureau, Kew, Surrey, England.Google Scholar
Capinera, J.L. and Sechrist, T.S.. 1982. Grasshoppers (Acrididae) of Colorado: Identification, Biology and Management. Bulletin 584S: 161 pp. Colorado State University Experiment Station, Fort Collins, CO.Google Scholar
Carruthers, R.I., Haynes, D.L. and MacLeod, D.M.. 1985. Entomophthora muscae (Entomophthoraceae) mycosis in the onion fly, Delia antiqua (Diptera: Anthomyiidae). Journal of Invertebrate Pathology 45: 8193.Google Scholar
Carruthers, R.I., Larkin, T.S., Firstencel, H. and Feng, Z.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.Google Scholar
Carruthers, R.I., Larkin, T.S. and Soper, R.S.. 1988. Simulation of insect disease dynamics: An application of SERB to a rangeland ecosystem. Simulation 51: 101109.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. and Soper, R.S.. 1997. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers. pp. 329–353 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Carruthers, R.I., Sawyer, A.J. and Hural, K.. 1991. Use of fungal pathogens for biological control of insect pests. pp. 336372in Sustainable Agriculture Research and Education in the Field: A Proceedings. National Academy Press, Washington, DC.Google Scholar
Carruthers, R.I. and Soper, R.S.. 1987. Fungal diseases, pp. 357–416 in Fuxa, J.R., and Tanada, Y. (Eds.), Epizootiology of Insect Diseases. Wiley Interscience, New York, NY. 555 pp.Google Scholar
Chapman, R.F. and Page, W.W.. 1979. Factors affecting the mortality of the grasshopper, Monocerus variegatus, in southern Nigeria. Journal of Animal Ecology 48: 271288.Google Scholar
Dean, G.J.W. and Wilding, N.. 1973. Infection of cereal aphids by the fungus Entomophthora. Annals of Applied Biology 74: 133138.Google Scholar
Fielding, D.J. and Brusven, M.A.. 1990. Historical analysis of grasshopper (Orthoptera: Acrididae) population responses to climate in southern Idaho, 1950–1980. Environmental Entomology 19: 17861791.Google Scholar
Fowler, A.C., Knight, R.L., George, T.L. and McEwen, L.C.. 1991. Effects of avian predation on grasshopper populations in North Dakota grasslands. Ecology 72(5): 17751781.Google Scholar
Galaini-Wraight, S., Wraight, S.P., Carruthers, R.I., Magalhães, B.P. and Roberts, D.W.. 1991. Description of a Zoophthora radicans (Zygomycetes: Entomophthoraceae) epizootic in a population of Empoasca kraemeri (Homoptera: Cicadellidae) on beans in Central Brazil. Journal of Invertebrate Pathology 58: 311326.Google Scholar
Glare, T.R., Milner, R. and Chiver, G.A.. 1986. The effect of environmental factors on the production, discharge and germination of primary conidia of Zoophthora phalloides Batko. Journal of Invertebrate Pathologv 48: 275283.Google Scholar
Goettel, M.S. 1992. Fungal agents for biocontrol. pp. 122–132 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers, Proceedings of a Workshop, Cotonou, Benin, April 29–May 1, 1991. CAB International, Wallingford, UK. 394 pp.Google Scholar
Hajek, A.E., Carruthers, R.I. and Soper, R.S.. 1990. Temperature and moisture relations of sporulation and germination by Entomophaga maimaiga (Zygomycetes: Entomophthoraceae), a fungal pathogen of Lymantria dispar (Lepidoptera: Lymantriidae). Environmental Entomology 19: 8590.Google Scholar
Hajek, A.E. and Soper, R.S.. 1992. Temporal dynamics of Entomophaga maimaiga after death of gypsy moth (Lepidoptera: Lymantriidae) larval hosts. Environmental Entomology 21: 129135.Google Scholar
Hosmer, D.W. Jr.,, and Lemeshow, S.. 1989. Applied Logistic Regression. Wiley Interscience, New York, NY.Google Scholar
Joern, A. 1992. Variable impact of avian predation on grasshopper assemblies in sandhills grassland. Oikos 64(3): 458463.Google Scholar
Larkin, T.S., Carruthers, R.I. and Soper, R.S.. 1988. Simulation and object-oriented programming: The development of SERB. Simulation 51: 93100.Google Scholar
Lockwood, J.A. 1988. Cannibalism in rangeland grasshoppers (Orthoptera: Acrididae) attraction to cadavers. Journal of the Kansas Entomological Society 61(4): 379387.Google Scholar
Lockwood, J.A. 1989. Ontogeny of cannibalism in rangeland grasshoppers (Orthoptera: Acrididae). Journal of the Kansas Entomological Society 62(4): 534541.Google Scholar
MacLeod, D.M. and Müller-Kögler, E.. 1973. Entomogenous fungi: Entomophthora species with pear-shaped to almost spherical conidia. Mycologia 65: 823893.Google Scholar
MacLeod, D.M., Tyrrell, D. and Welton, M.A.. 1980. Isolation and growth of the grasshopper pathogen, Entomophthora grylli. Journal of Invertebrate Pathology 36: 8589.Google Scholar
Millstein, J.A., Brown, G.C. and Nordin, G.L.. 1982. Microclimatic humidity influence on conidial discharge in Erynia sp. (Entomophthorales: Entomophthoraceae), an entomopathogenic fungus of the alfalfa weevil (Coleoptera: Curculionidae). Environmental Entomology 11: 11661169.Google Scholar
Millstein, J.A., Brown, G.C. and Nordin, G.L.. 1983. Microclimatic moisture and conidial production in Erynia sp. (Entomophthorales: Entomophthoraceae): In vivo production rate and duration under constant and fluctuating moisture regimes. Environmental Entomology 12: 13441349.Google Scholar
Milner, R.J. 1978. On the occurrence of Entomophthora grylli, a fungal pathogen of grasshoppers in Australia. Journal of the Australian Entomological Society 17: 293296.Google Scholar
Milner, R.J. 1985. Field tests of a strain of Entomophaga grylli from the USA for biocontrol of the Australian wingless grasshopper, Phaulacridium vittatum. pp. 255261in Chapman, R.B. (Ed.), Proceedings, 4th Australian Conference on Grassland Invertebrate Ecology, Lincoln College, Canterbury, New Zealand, 13–17 May 1985. Caxton Press, Christchurch.Google Scholar
Newman, G.C. and Carner, G.R.. 1975 a. An Entomophthoran infection of the adult cluster fly, Pollenia rudis. Journal of the Georgia Entomological Society 10: 315326.Google Scholar
Newman, G.C. and Carner, G.R.. 1975 b. Environmental factors affecting conidial sporulation and germination of Entomophthora gammae. Environmental Entomology 4: 615618.Google Scholar
Nordin, G.L., Brown, G.C. and Millstein, J.A.. 1983. Epizootic phenology of Erynia disease of the alfalfa weevil, Hypera postica (Gyllenhal) (Coleoptera: Curculionidae), in central Kentucky. Environmental Entomology 12: 13501355.Google Scholar
O'Neill, K.M., Woods, S., Streett, D. and O'Neill, R.P.. 1993. Aggressive interactions and feeding success of scavenging grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22(4): 751758.Google Scholar
Pickford, R. 1963. Wheat crops and native prairie in relation to the nutritional ecology of Camnula pellucida (Scudder) (Orthoptera: Acrididae) in Saskatchewan. The Canadian Entomologist 95: 764770.Google Scholar
Pickford, R. and Riegert, P.W.. 1964. The fungus disease caused by Entomophthora grylli Fres., and its effect on grasshopper populations in Saskatchewan in 1963. The Canadian Entomologist 96: 11581166.Google Scholar
Ramoska, W.A., Hajek, A.E., Ramos, M.E. and Soper, R.S.. 1988. Infection of grasshoppers (Orthoptera: Acrididae) by members of the Entomophaga grylli species complex (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 52: 309313.Google Scholar
Roffey, J. 1968. The occurrence of the fungus Entomophthora grylli Fres. on locusts and grasshoppers in Thailand. Journal of Invertebrate Pathology 11: 237241.Google Scholar
Skaife, S.H. 1925. The locust fungus, Empusa grylli, and its effect on its host. South African Journal of Science 22: 298308.Google Scholar
Soper, R.S. and MacLeod, D.M.. 1981. Descriptive Epizootiology of an Aphid Mycosis. USDA Technical Bulletin 1632: 17 pp.Google Scholar
Soper, R.S., May, B. and Martinell, B.. 1983. Entomophaga grylli enzyme polymorphism as a technique for pathotype identification. Environmental Entomology 12: 720723.Google Scholar
Streett, D.A. and McGuire, M.R.. 1990. Pathogenic diseases of grasshoppers, pp. 483516in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY.Google Scholar
SYSTAT. 1992. SYSTAT: Statistics, Version 5.2 Edition. SYSTAT, Inc., Evanston, IL.Google Scholar
Vandenberg, J.D. and Soper, R.S.. 1978. Prevalence of Entomophthorales mycoses in populations of spruce budworm, Choristoneura fumiferana. Environmental Entomology 7: 847853.Google Scholar
Wilding, N. 1969. Effect of humidity on the sporulation of Entomophthora aphidis and E. thaxteriana. Transactions of the British Mycological Society 53: 126130.Google Scholar
Wilding, N. 1975. Entomophthora species infecting pea aphis. Transactions of the Royal Entomological Society 127: 171183.Google Scholar
Wilding, N. and Lauckner, F.B.. 1974. Entomophthora infecting wheat bulb fly at Rothamsted, Hertfordshire, 1967–71. Annals of Applied Biology 76: 161170.Google Scholar
Wilding, N. and Perry, J.N.. 1980. Studies on Entomophthora in populations of Aphis fabae on field beans. Annals of Applied Biology 94: 367378.Google Scholar