Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-04T19:10:19.025Z Has data issue: false hasContentIssue false

SAFETY AND REGISTRATION OF MICROBIAL AGENTS FOR CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

Mark S. Goettel
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canada T1J 4B1
Stefan T. Jaronski
Affiliation:
Mycotech Corporation, PO Box 4109, Butte, Montana, USA 59702
Get access

Abstract

Microbial control agents offer a method of pest control using organisms that are a natural component of the environment and are usually much more selective than chemical pesticides. Furthermore, they can usually be integrated with other methods of control, and may provide prolonged control by establishment within the host population. However, microbial control agents also possess properties that can pose human and environmental risks depending on the nature of the pathogen and its pattern of use. We present an overview of issues concerning the safety and registration of microbial control agents with emphasis on pathogens of locusts and grasshoppers. The potential safety issues and other consequences of concern from the deployment of microorganisms for pest control are: (1) pathogenicity to non-target organisms, (2) toxigenicity to non-target organisms, (3) competitive displacement of microorganisms, and (4) allergenicity. Inundative control methods pose unique risks because the pathogens must be produced in large quantities, stored, transported, and applied, usually in concentrations much higher than would normally ever occur naturally. The overriding concern in introducing an exotic agent is the risk to non-target beneficial organisms, because once the agent becomes established, it will in most situations be impossible to eradicate. However, if indigenous organisms are used, there is relatively little risk of irreversible, long-term detrimental effects. A synopsis of safety testing results of some of the more promising microbial control agents for grasshoppers and locusts and an evaluation of their potential hazards are presented. Safety to vertebrates is evaluated by a tiered series of laboratory test requirements. Assessments on hazards to non-target invertebrates are based principally on results of laboratory bioassays. Safety tests should be chosen with regard to the biological characteristics of the agent and should not impose standards that are more stringent than those imposed on other forms of pest control. Regulatory oversight should assure the integrity of the environment and safety of the public, while at the same time not unduly hampering the development, registration, and use of more sustainable pest control methods.

Résumé

La méthode de lutte contre les ravageurs au moyen d'agents microbiens utilise des organismes trouvés en milieu naturel et généralement beaucoup plus sélectifs que les pesticides chimiques. Ces agents peuvent être combinés à d'autres méthodes de lutte et avoir une action prolongée grâce à leur établissement au coeur de la population hôte. Cependant, l'utilisation d'agents microbiens comporte des risques pour la population humaine et pour l'environnement qui sont fonction de la nature même du pathogène et de la méthode d'application. Nous présentons ici un aperçu des problèmes qui entourent l'utilisation sécuritaire et l'enregistrement des agents pathogènes, en particulier ceux qui sont utilisés dans la lutte contre les criquets; les points à étudier particulièrement sont : (1) les effets pathogènes sur les organismes non visés, (2) la toxicité pour les organismes non visés, (3) la compétition imposée aux micro-organismes en place par les nouveaux micro-organismes et (4) les propriétés allergènes des agents utlisés. Les méthodes envahissantes de lutte comportent des risques très particuliers parce que les pathogènes doivent être produits en grande quantité, entreposés, transportés et généralement appliqués en concentrations beaucoup plus élevées que celles qui prévalent en nature. Le point le plus critique de l'introduction d'un agent exotique de lutte contre les ravageurs est le risque encouru par les organismes utiles non visés puisque, une fois établi, l'agent est généralement impossible à éliminer. Par ailleurs, si des organismes indigènes sont utilisés, les risques d'effets dommageables importants, durables et irréversibles sont relativement faibles. On trouvera ici un résumé des résultats de tests sur la sécurité d'utilisation d'agents prometteurs de lutte contre les criquets, ainsi qu'une évaluation des risques qui leur sont associés. L'innocuité pour les vertébrés est évaluée au moyen de séries hiérarchiques de tests en laboratoire. Les évaluations des risques pour les invertébrés non visés sont basées en grande partie sur les résultats de tests en laboratoire. Les tests destinés à évaluer l'innocuité d'un agent doivent être choisis en fonction des caractéristiques biologiques de l'agent et ne doivent pas imposer de contraintes qui soient plus sévères que celles qui sont associées à d'autres formes de lutte contre les ravageurs. Les règles d'utilisation d'un agent doivent assurer l'intégrité de l'environnement et tenir compte de la sécurité des personnes, mais ne doivent pas être telles qu'elles empêchent la fabrication, l'enregistrement et l'utilisation de méthodes de lutte plus durables contre les ravageurs. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhurst, R.J. 1990. Safety to nontarget invertebrates of nematodes of economically important pests, pp. 233–240 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Andermatt, M. 1995. Production of microbial control agents and nematodes—a niche for a small company? pp. 6264in Proceedings, Microbial Control Agents in Sustainable Agriculture: Field Experience, Industrial Production and Registration, Oct. 18, 19, Saint Vincent, Italy.Google Scholar
Anonymous. 1989. Subdivision M of the Pesticide Testing Guidelines, Microbial and Biochemical Pest Control Agents. United States Environmental Protection Agency, Washington, DC.Google Scholar
Baker, G., and Capinera, J.L.. 1997. Nematodes and nematomorphs as control agents of grasshoppers and locusts. pp. 157–211 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Ball, B.V., Pye, B.J., Carreck, N.L., Moore, D. and Bateman, R.P.. 1994. Laboratory testing of a mycopesticide on non-target organisms: The effects of an oil formulation of Metarhizium flavoviride applied to Apis mellifera. Biocontrol Science and Technology 4: 289296.Google Scholar
Bathon, H. 1996. Impact of entomopathogenic nematodes on non-target hosts. Biocontrol Science and Technology 6: 421434.Google Scholar
Betz, F.S., Forsyth, S.F. and Stewart, W.E.. 1990. Registration requirements and safety considerations for microbial pest control agents in North America, pp. 3–10 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Boemare, N., Laumond, C. and Mauleon, H.. 1996. The entomopathogenic nematode–bacterium complex: Biology, life cycle and vertebrate safety. Biocontrol Science and Technology 6: 333345.Google Scholar
Bridge, P.D., Prior, C., Sagbohan, J., Lomer, C.J., Carey, M. and Buddie, A.. 1997. Molecular characterization of isolates of Metarhizium from locusts and grasshoppers. Biodiversity and Conservation. 6: 177189.Google Scholar
Brooks, W.M. 1988. Entomogenous protozoa, pp. 149in Ignoffo, C.M. (Ed.), CRC Handbook of Natural Pesticides. Volume V. Microbial Insecticides. Part A, Entomogenous Protozoa and Fungi. CRC Press, Boca Raton, FL.Google Scholar
Buchwaldt, L. and Green, H.. 1992. Phytotoxicity of Destruxin B and its possible role in the pathogenesis of Alternaria brassicae. Plant Pathology 41: 5563.Google Scholar
Burges, H.D. 1981. Safety, safety testing and quality control of microbial pesticides, pp. 737–767 in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases. Academic Press, New York, NY. 949 pp.Google Scholar
Carruthers, R.I. and Onsager, J.A.. 1993. Perspective on the use of exotic natural enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 885903.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. and Soper, R.S.. 1997. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers. pp. 329–353 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Collins, M.K., Bradley, C.R. and Jaronski, S.T.. 1994. Evaluation of Potential Embryo–Larval Toxicity and Pathogenicity of Beauveria bassiana to Fathead Minnow (Pimephales promelas) Under Static Renewal Conditions p 117 in Abstracts, VIth International Colloquium on Invertebrate Pathology and microbial control, Montpellier, France, August 28–September 2, 1994, 417 pp.Google Scholar
Cook, R.J. 1993. The role of biological control in pest management in the 21st century, pp. 1020in Lumsden, R.D., and Vaughn, J.M. (Eds.), Pest Management: Biologically Based Technologies. American Chemical Society.Google Scholar
Cook, R.J., Bruckart, W.L., Coulson, J.R., Goettel, M.S., Humber, R.A., Lumsden, R.D., Maddox, J.V., McManus, M.L., Moore, L., Meyer, S.F., Quimby, P.C., Stack, J.P. and Vaughn, J.L.. 1996. Safety of microorganisms intended for pest and plant disease control: A framework for scientific evaluation. Biological Control 7: 333359.Google Scholar
Couch, J.A. and Foss, S.S.. 1990. Potential impact of microbial insecticides on the estuarine and marine environments, pp. 85–97 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Dall, D. 1994. Entomopoxviruses as pesticides for the future, pp. 223227in Monsour, C.J., Reid, S.R., and Teakle, R.E. (Eds.), Proceedings of the 1 st Brisbane Symposium Biopesticides: Opportunities for Australian Industry. June 9–10, 1994, Brisbane.Google Scholar
DeFoliart, G. 1992. Insects as human food. Crop Protection 11: 395399.Google Scholar
Ehlers, R.-U. and Hokkanen, H.M.T.. 1996. Insect biocontrol with non-endemic entomopathogenic nematodes (Steinernema and Heterorhabditis spp.): Conclusions and recommendations of a combined OECD and COST regulatory workshop on scientific and regulatory policy issues. Biocontrol Science and Technology 6: 295302.Google Scholar
Ehlers, R.-U. and Peters, A.. 1995. Entomopathogenic nematodes in biological control: Feasibility, perspectives and possible risks, pp. 119–136 in Hokkanen, H.M.T., and Lynch, J.M. (Eds.), Biological Control: Benefits and Risks. Cambridge University Press, Cambridge. 304 pp.Google Scholar
Engler, R. and Arata, A.A.. 1977. Public health and environmental safety, pp. 157–170 in Laird, M. (Ed.), Tsetse, The Future for Biological Methods in Integrated Control. IDRC, Ottawa, ON. 220 pp.Google Scholar
Fargues, J., Robert, P.H. and Vey, A.. 1985. Influence of Destruxins A, B, and E on disease development of Metarhizium anisopliae in scarabeid larvae. Entomophaga 30: 353364.Google Scholar
Fromtling, R.A., Jensen, J.M., Robinson, B.E. and Bulmer, G.S.. 1979. Fatal mycotic pulmonary disease of captive American alligators. Veterinary Pathology 16: 428431.Google Scholar
Genthner, F.J. and Middaugh, D.P.. 1992. Effects of Beauveria bassiana on embryos of the inland silverside fish, Menidia beryllina. Applied and Environmental Microbiology 58: 28402845.Google Scholar
Genthner, F.J., Cripe, G.M. and Crosby, D.J.. 1994a. Effect of Beauveria bassiana and its toxins on Mysidopsis bahia (Mysidacea). Archives of Environmental Contamination and Toxicology 26: 9094.Google Scholar
Genthner, F.J., Foss, S.S. and Fisher, W.S.. 1994b. Testing of the insect pest control fungus Beauveria bassiana in grass shrimp Palaemonetes pugio. Diseases of Aquatic Organisms 20: 4957.Google Scholar
Germida, J.J., Onofriechuk, E.E. and Ewen, A.B.. 1987. Effect of Nosema locustae Canning (Microsporida) and three chemical insecticides on microbial activity in soil. Canadian Journal of Soil Science 67: 631637.Google Scholar
Goerzen, D.W., Erlandson, M.A. and Moore, K.C.. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development in the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachihdae). The Canadian Entomologist 122: 10391040.Google Scholar
Goettel, M.S. 1994. Host range and specificity in relation to safety of exotic fungi, pp. 325329in Proceedings VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, August 1994.Google Scholar
Goettel, M.S. 1995. The utility of bioassays in the risk assessment of entomopathogenic fungi, pp 2–7 in Biotechnology Risk Assessment: USEPA/USDA, Environment Canada, Agriculture and Agri-Food Canada Proceedings of the Biotechnology Risk Assessment Symposium, June 6–8, 1995, Pensacola, FL. 455 pp.Google Scholar
Goettel, M.S. and Johnson, D.L.. 1992. Environmental impact and safety of fungal biocontrol agents, pp. 356–361 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Goettel, M.S., Poprawski, T.J., Vandenberg, J.D., Li, Z. and Roberts, D.W.. 1990. Safety to nontarget invertebrates of fungal biocontrol agents, pp. 209–232 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Grove, J.F. and Pople, M.. 1980. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70: 103105.Google Scholar
Gupta, S., Krasnoff, S.B., Renwick, J.A.A. and Roberts, D.W.. 1993. Viridoxins A and B: Novel toxins from the fungus Metarhizium flavoviride. Journal of Organic Chemistry 58: 10621067.Google Scholar
Gupta, S., Kransoff, S.B., Underwood, N.L., Renwick, J.A.A. and Roberts, D.W.. 1991. Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115: 185189.Google Scholar
Gupta, S., Montllor, C. and Hwang, Y.-S.. 1995. Isolation of novel Beauvericin analogues from the fungus Beauveria bassiana. Journal of Natural Products 58: 733738.Google Scholar
Harper, J.D. 1987. Applied epizootiology: Microbial control of insects. pp. 473496in Fuxa, J.R., and Tanada, Y. (Eds.), Epizootiology of Insect Diseases. John Wiley & Sons, New York, NY.Google Scholar
Heimpel, A.M. 1971. Safety of insect pathogens for man and invertebrates, pp. 469–488 in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, New York, NY. 861 pp.Google Scholar
Hollander, A.E. 1991. Environmental impacts of genetically engineered microbial and viral biocontrol agents. pp. 251266in Maramorosch, K. (Ed.), Biotechnology for Biological Control of Pests and Vectors. CRC Press, Boca Raton, FL.Google Scholar
Hoy, M.A. and Herzog, D.C.. 1985. Biological Control in Agricultural IPM Systems. Academic Press, New York, NY. 589 pp.Google Scholar
Ignoffo, C.M. 1973. Effects of entomopathogens on vertebrates. Annals of the New York Academy of Sciences 217: 141172.Google Scholar
Inglis, G.D., Johnson, D.L. and Goettel, M.S.. 1996. An oil-bait bioassay method used to test the efficacy of Beauveria bassiana against grasshoppers. Journal of Invertebrate Pathology 67: 312315.Google Scholar
Jaronski, S.T. and Goettel, M.S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts. pp. 225–237 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jaronski, S.T., Lobo-Lima, M.O., Razafindratiana, E., Britton, J., Guza, H., O'Leary, C., Bradley, C., Henry, J.E. and Swearingen, W.. 1994. Isolation and Evaluation of Fungal Pathogens of Locusta migratoria from Madagascar. p 321 in Abstracts, VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, August 28–September 2, 1994. 417 pp.Google Scholar
Johnson, D.L. 1997. Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects. pp. 375–389 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Lacey, L.A. and Goettel, M.S.. 1995. Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga 40: 327.Google Scholar
Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.). 1990. Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Li, Z.Z. 1988. A list of insect hosts of Beauveria bassiana. pp. 1014in Li, Y.W., Li, Z.Z., Liang, Z.Q., Wu, J.W., Wu, Z.K., and Xi, Q.F. (Eds.), Study and Application of Entomogenous Fungi in China. Academic Periodical Press, Beijing, PRC.Google Scholar
Lockwood, J.A. 1993. Environmental issues involved in biological control of rangeland grasshoppers (Orthoptera: Acrididae) with exotic agents. Environmental Entomology 22: 503518.Google Scholar
Lomer, C.J. and Prior, C.. 1992. Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Lord, J. 1995. Mycotech receives EPA registration of Beauveria bassiana products. Society for Invertebrate Pathology Newsletter 27(2): 13.Google Scholar
Lundholm, B., and Stackerud, M. (Eds.). 1980. Environmental Protection and Biological Forms of Control of Pest Organisms. Ecological Bulletin (Stockholm) 31: 135 pp.Google Scholar
MacKenzie, D.R. 1994. Environmental risk analysis. pp. 15–26 in Levin, M., Grim, C., and Angle, J.S. (Eds.), Biotechnology Risk Assessment. Publication # 1001, University of Maryland Biotechnology Institute, College Park, MD. 380 pp.Google Scholar
Maddox, J.V. 1992. The effect of regulations on the use of insect pathogens as biological control agents. pp. 73–81 in Charudattan, R., and Browning, H. (Eds.), Regulations and Guidelines: Critical Issues in Biological Control. USDA/CSRS National Workshop, Vienna, Virginia, 10–12 June, 1991, IFAS, University of Florida, Gainesville, FL. 183 pp.Google Scholar
Nakajyo, S., Shimizu, K., Kometani, A., Kato, K. and Kamizaki, J.. 1982. Inhibitory effect of bassianolide, a cyclodepsipeptide, on drug induced contractions of isolated smooth muscle preparations. Japan. Journal of Pharmacology 32: 5564.Google Scholar
Patrick, M.Adlord, M.W. and Keshavarz, T.. 1993. Production of an indolizidine alkaloid, swainsonine, by the filamentous fungus Metarhizium anisopliae. Biotechnology Letters 15: 9971000.Google Scholar
Pimentel, D., Andow, D., Dyson-Hudson, R., Gallahan, D., Jacobson, S., Irish, M., Kroop, S., Moss, A., Schreiner, I., Shepard, M., Thompson, T. and Vonzant, B.. 1991 a. Environmental and social costs of pesticides: A preliminary assessment. pp. 721740in Pimentel, D. (Ed.), CRC Handbook of Pest Management in Agriculture, 2nd ed., Vol. 1. CRC Press, Boca Raton, FL.Google Scholar
Pimentel, D., McLaughlin, L., Zepp, A., Lakitan, B., Kraus, T., Kleinman, P., Vancini, F., Roach, W.J., Graap, E., Keeton, W.S. and Selig, G.. 1991 b. Environmental and economic impacts of reducing U.S. agricultural pesticide use. pp. 679718in Pimentel, D. (Ed.), CRC Handbook of Pest Management in Agriculture, 2nd ed., Vol. 1. CRC Press, Boca Raton, FL.Google Scholar
Poprawski, T. J., Robert, P.H. and Maniania, N.K.. 1994. Contact toxicity of the mycotoxin Destruxin E to Empoasca vitis (Gothe). Journal of Applied Entomology 117: 135143.Google Scholar
Prior, C. 1997. Susceptibility of target acridoids and non-target organisms to Metarhizium anisopliae and M. flavoviride. pp. 369375in Peveling, R., and Krall, S. (Eds.), Proceedings of the CILSS-UCTR/PV-GTZ International Conference on New Strategies in Locust Control, Bamako, 3–8 April 1995, GTZ, Germany.Google Scholar
Prior, C. and Streett, D.A.. 1997. Strategies for the use of entomopathogens in the control of the desert locust and other acridoid pests. pp. 5–25 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Roberts, D.W. 1969. Toxins from the entomogenous fungus Metarhizium anisopliae: Isolation of toxins from submerged culture. Journal of Invertebrate Pathology 14: 8288.Google Scholar
Saik, J.E., Lacey, L.A. and Lacey, C.M.. 1990. Safety of microbial insecticides to vertebrates—domestic animals and wildlife. pp. 115–132 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Samuels, R.I., Charnley, A.K. and Reynolds, S.E.. 1988. The role of destruxins in the pathogenicity of three strains of Metarhizium anisopliae for the tobacco hornworm, Manduca sexta. Mycopathologia 104: 5158.Google Scholar
Sherwood, R.L., Johnson, W.D. and Jaronski, S.T.. 1994. Acute pulmonary and intraperitoneal toxicity/infectivity and ocular irritation assessment of Beauveria bassiana, Paecilomyces fumososroseus, Metarhizium anisopliae and M. flavoviride isolates. Abstracts, VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, August 28–September 2, 1994, 417 pp.Google Scholar
Siegel, J.P. and Shadduck, J.A.. 1990. Safety of microbial insecticides to vertebrates—humans. pp. 101–113 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds.), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Sim, K.L. and Perry, D.. 1995. Swainsonine production by Metarhizium anisopliae determined by means of an enzymatic assay. Mycological Research 99: 10781082.Google Scholar
Streett, D.A., Woods, S.A. and Erlandson, M.A.. 1997. Entomopoxviruses of grasshoppers and locusts: Biology and biological control potential. pp. 115–130 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Suzuki, A., Kanaoka, M., Isogai, A., Murakoshi, S., Ichinoe, M. and Tamura, S.. 1977. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Letters 25: 21672170.Google Scholar
USDA. 1995. Risk Assessment Research, 1992–1994. An overview of the USDA Biotechnology Risk Assessment Research Grants Program. National Biological Impact Assessment Program, Washington, DC. 14 pp.Google Scholar
Vandenberg, J.D., Streett, D.A. and Herbert, E.W. Jr., 1990. Safety of grasshopper entomopoxviruses for caged adult honey bees. Journal of Economic Entomology 83: 784787.Google Scholar
Wahlman, M. and Davidson, D.S.. 1993. New destruxins from the entomopathogenic fungus Metarhizium anisopliae. Journal of Natural Products 56: 643647.Google Scholar
Zelazny, B., Goettel, M.S. and Keller, B.. 1997. The potential of bacteria for the microbial control of grasshoppers and locusts. pp. 147–156 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar