Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T16:40:20.599Z Has data issue: false hasContentIssue false

THE INTERACTIONS OF VERTEBRATES AND INVERTEBRATES IN PEATLANDS AND MARSHES

Published online by Cambridge University Press:  31 May 2012

Henry R. Murkin
Affiliation:
Delta Waterfowl and Wetlands Research Station, R.R.1, Portage la Prairie, Manitoba, Canada RIN 3A1
Bruce D.J. Batt
Affiliation:
Delta Waterfowl and Wetlands Research Station, R.R.1, Portage la Prairie, Manitoba, Canada RIN 3A1
Get access

Abstract

This paper reviews the interactions of vertebrates and invertebrates in peatlands and marshes to assess current knowledge and future research needs. Living organisms may interact through a number of direct trophic and nutrient pathways and a variety of non-trophic, habitat-dependent relationships. Freshwater marshes and peatlands are dynamic aquatic environments and organisms that occupy these areas must be adapted to a wide range of environmental conditions. The avian community illustrates the main interactions of invertebrates and vertebrates in peatlands and marshes. Waterfowl, along with fish and furbearers, are the most economically important vertebrates using these habitats. Each of these groups has important trophic and habitat links to the invertebrates within wetlands.The most common interaction between vertebrates and invertebrates is the use of invertebrates as food by vertebrates. Few studies, however, have dealt with trophic dynamics or secondary production within wetlands. Waterfowl, fish, and many other wetland vertebrates, during all or part of their life cycles, regularly feed on invertebrates. Some invertebrates are vectors of disease and parasites to vertebrates. Vertebrates can directly affect the structural substrate that invertebrates depend on as habitat through consumption of macrophytes or through the use of living and dead plant material in the construction of houses and nests. Conversely, herbivorous invertebrates may directly affect the survival and distribution of macrophytes in wetlands. Macrophyte distribution, in turn, is an important factor in determining vertebrate use of wetlands. The general lack of both taxonomic and ecological information on invertebrates in wetlands is the main hindrance to future elucidation of vertebrate–invertebrate interactions in these environments. Development of invertebrate sampling techniques suitable for wetland habitats also is necessary. More specific research needs must be met to develop a better understanding of the structure and function of these dynamic systems.

Résumé

Cette contribution fait le point sur les interactions entre invertébrés et vertébrés des tourbières et des marécages afin d'évaluer l'état des connaissances et les besoins de recherche. Les organismes vivants peuvent interagir en manifestant entre eux divers rapports trophiques et nutritionnels directs, et diverses relations non-trophiques, dépendantes de l'habitat. Les tourbières et les marécages d'eau douce sont des milieux aquatiques dynamiques, et les organismes qu'il y vivent doivent s'adapter à une grande variété de conditions environnementales. La communauté avienne est responsable des interactions dominantes entre invertébrés et vertébrés dans les tourbières et les marécages. La sauvagine avec les poissons et les animaux à fourrure sont les vertébrés ayant l'importance économique la plus grande dans ces habitats. Chacun de ces groupes entretient des liens trophiques et des liens dépendants de l'habitat avec les invertébrés de ces milieux humides.L'interaction la plus commune entre les vertébrés et les invertébrés est l'utilisation de ces derniers comme source de nourriture par les premiers. Peu d'études se sont attardées à la dynamique des relations trophiques et à la production secondaire dans les milieux humides. La sauvagine, le poisson et plusieurs autres vertébrés des milieux humides se nourrissent normalement d'invertébrés durant au moins une partie de leur cycle. Certains invertébrés sont vecteurs de maladies et parasites de vertébrés. Les vertébrés peuvent affecter directement le substrat servant d'habitat aux invertébrés en consommant les macrophytes ou en utilisant du matériel végétal mort ou vivant pour la construction d'abris ou de nids. Inversement, les invertébrés herbivores peuvent affecter directement la survie et la répartition des macrophytes dans les milieux humides. La répartition des macrophytes est à son tour un facteur important qui détermine l'utilisation de milieux humides par les vertébrés. L'insuffisance des connaissances sur la taxonomie et l'écologie des invertébrés des milieux humides est la principale barrière qui se dresse devant l'élucidation des interactions vertébrés–invertébrés dans ces milieux. Le développement de techniques d'échantillonnage des invertébrés dans les milieux humides sera aussi essentielle. On devra atteindre des objectifs de recherche très spécifiques afin de mieux comprendre la structrue et le fonctionnement de ces écosystèmes dynamiques.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.H., and Sedell, J.R.. 1979. Detritus processing by macroinvertebrates in stream ecosystems. A. Rev. Ent. 24: 351377.Google Scholar
Bartell, S.M., and Breck, J.E.. 1979. Simulated impact of marcrophyte harvesting on pelagic phosphorous cycling in Lake Wingra. pp. 229250in Breck, J.E., Prentki, R.T., and Loucks, O.L. (Eds.), Aquatic Plants, Lake Management and Ecosystem Consequences of Lake Harvesting. Inst. Environ. Studies, Univ. Wisconsin, Madison.Google Scholar
Bartonek, J.C., and Hickey, J.J.. 1969. Food habits of canvasbacks, redheads, and lesser scaup in Manitoba. Condor 71: 280290.Google Scholar
Bartonek, J.C., and Trauger, D.L.. 1975. Leech (Hirudinea) infestation among waterfowl near Yellowknife, Northwest Territories. Can. Field Nat. 89: 324.Google Scholar
Bay, E.C., and Anderson, L.D.. 1966. Studies with the mosquito fish Gambusia affinis as a chironomid control. Ann. ent. Soc. Am. 59: 150153.Google Scholar
Bennett, G.W. 1962. Management of Artificial Lakes and Ponds. Reinhold Publ., New York. 283 pp.Google Scholar
Berg, C.O. 1950. The biology of aquatic caterpillars which feed on Potamogeton. Trans. Am. microsc. Soc. 69: 254266.Google Scholar
Beule, J.D. 1979. Control and management of cattails in southeastern Wisconsin wetlands. Tech. Bull. Wis. Dep. Nat. Resour. 112. Madison, Wisconsin. 41 pp.Google Scholar
Breck, J.E., and Kitchell, J.F.. 1979. Effects of macrophyte harvesting on simulated predator–prey interactions. pp. 211228in Breck, J.E., Prentki, R.T., and Loucks, L.O. (Eds.), Aquatic Plants, Lake Management and Ecosystem Consequences of Lake Harvesting. Inst. Environ. Studies, Univ. Wisconsin, Madison.Google Scholar
Buckner, C.H. 1964. Metabolism, food capacity, and feeding behaviour in four species of shrews. Can. J. Zool. 42: 259279.Google Scholar
Buckney, R.T., and Tyler, P.A.. 1973. Chemistry of some sedgeland waters: Lake Pedder, South-west Tasmania. Aust. J. mar. Freshwat. Res. 24: 267273.Google Scholar
Cattaneo, A., and Kalff, J.. 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280289.Google Scholar
Clark, J. 1978. Freshwater wetlands: habitats for aquatic invertebrates, amphibians, reptiles, and fish. pp. 330343in Greeson, P.E., Clark, J.R., and Clark, J.E. (Eds.), Wetland Functions and Values: The State of our Understanding. Tech. Publ. Am. Wat. Resour. Assoc. TPS79-2.Google Scholar
Collins, J.N., Balling, S.S., and Resh, V.H.. 1983. The Coyote Hills Marsh model: calibration of interactions among floating vegetation, waterfowl, invertebrate predators, alternate prey, and Anopheles mosquitoes. Proc. Pap. a. Conf. Calif. Mosq. Vector Control Assoc. 51: 6973.Google Scholar
Collins, J.N., and Resh, V.H.. 1985 a. Utilization of natural and man-made habitats by the salt marsh song sparrow, Melospiza melodia samuelis (Baird). Calif. Fish Game 71: 4052.Google Scholar
Collins, J.N., and Resh, V.H.. 1985 b. Do waterfowl affect mosquitoes in Coyote Hills Marsh? Proc. Pap. a. Conf. Calif. Mosq. Vector Control Assoc. 52: 129133.Google Scholar
Connelly, D.P., and Chesemore, D.L.. 1980. Food habits of pintails, Anas acuta, wintering on seasonally flooded wetlands in the northern San Joaquin Valley, California. Calif. Fish Game 66: 233237.Google Scholar
Cowan, W.F. 1973. Ecology and life history of the raccoon (Procyon lotor hirtus Nelson and Goldman) in the northern part of its range. Ph.D. thesis, Univ. North Dakota, Grand Forks. 161 pp.Google Scholar
Crow, J.H., and Macdonald, K.B.. 1978. Wetland values: secondary production, pp. 146161in Greeson, P.E., Clark, J.R., and Clark, J.E. (Eds.), Wetland Functions and Values: The State of our Understanding. Tech. Publ. Am. Wat. Resour. Assoc. TPS79-2.Google Scholar
Crowder, L.B., and Cooper, W.E.. 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 18021813.Google Scholar
Danell, K., and Sjöberg, K.. 1979. Decomposition of Carex and Equisetum in a northern Swedish lake: Dry-weight loss and colonization by macroinvertebrates. J. Ecol. 67: 191200.Google Scholar
Danell, K., and Sjöberg, K.. 1982. Succession patterns of plants, invertebrates and ducks in a man-made lake. J. appl. Ecol. 19: 395409.Google Scholar
de la Cruz, A.A. 1978. Production and transport of detritus in wetlands, pp. 162174in Greeson, P.E., Clark, J.R., and Clark, J.E. (Eds.), Wetland Functions and Values: The State of our Understanding. Tech. Publ. Am. Wat. Resour. Assoc. TPS79-2.Google Scholar
Driver, E.A., Sugden, L.G., and Kovach, R.J.. 1974. Caloric, chemical, and physical values of potential duck foods. Freshwat. Biol. 4: 281292.Google Scholar
Drobney, R.D., and Fredrickson, L.H.. 1979. Food selection by wood ducks in relation to breeding status. J. Wildl. Mgmt 43: 109120.Google Scholar
DuBowy, P.J. 1980. Optimal foraging and adaptive strategies of post-breeding male blue-winged teal and northern shovelers. M.Sc. thesis, Univ. North Dakota, Grand Forks. 122 pp.Google Scholar
Eberhardt, L.E., and Sargeant, A.B.. 1975. Mink predation on prairie marshes during the waterfowl breeding season, pp. 33–13 in The 1975 Predator Symposium. Montana For. Conserv. Exp. Stn, Missoula.Google Scholar
Errington, P.L., Siglin, R.J. and Clark, R.C.. 1963. The decline of a muskrat population. J. Wildl. Mgmt 27: 18.Google Scholar
Fenchel, T.M., and Jorgensen, B.B.. 1977. Detritus food chains of aquatic ecosystems: the role of bacteria, pp. 158in Cairns, J. (Ed.), Freshwater Microbial Communities. Garland Publishing, New York.Google Scholar
Ferguson, R.E. 1958. The preferred temperatures of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd Can. 15: 607624.Google Scholar
Heitmeyer, M.E. 1985. Wintering strategies of female mallards related to dynamics of lowland hardwood wetlands in the upper Mississippi Delta. Ph.D. thesis, Univ. Missouri, Columbia. 376 pp.Google Scholar
Hohman, W.L. 1985. Feeding ecology of ring-necked ducks in northwestern Minnesota. J. Wildl. Mgmt 49: 546557.Google Scholar
Holmes, J.C., and Bethel, W.M.. 1972. Modification of intermediate host behaviour by parasites, pp. 123149in Canning, E.U., and Wright, C.A. (Eds.), Behavioral Aspects of Parasite Transmission. Academic Press, London.Google Scholar
Hunter, B.F., Clark, W., Perkins, W., and Coleman, P.. 1970. Applied botulism research including management recommendations. Prog. Rep. Calif. Dep. Fish Game, Sacramento. 87 pp.Google Scholar
Joyner, D.E. 1980. Influence of invertebrates on pond selection by ducks in Ontario. J. Wildl. Mgmt 44: 700705.Google Scholar
Kadlec, J.A. 1962. The effect of a drawdown on the ecology of a waterfowl impoundment. Ecology 43: 267281.Google Scholar
Kaminski, R.M., and Prince, H.H.. 1981. Dabbling duck and macroinvertebrate responses to manipulated wetland habitats. J. Wildl. Mgmt 45: 115.Google Scholar
Kelso, J.R.M. 1973. Seasonal energy changes in walleye and their diet in West Blue Lake, Manitoba. Trans. Am. Fish. Soc. 103: 363368.Google Scholar
Krapu, G.L. 1974. Foods of breeding pintails in North Dakota. J. Wildl. Mgmt 38: 408417.Google Scholar
Krapu, G.L. 1979. Nutrition of female dabbling ducks during reproduction, pp. 5970in Bookhout, T.A. (Ed.), Waterfowl and Wetlands — An Integrated Review. La Crosse Printing Co., La Crosse.Google Scholar
Krapu, G.L. 1981. The role of nutrient reserves in mallard reproduction. Auk 98: 2938.Google Scholar
Krapu, G.L., and Swanson, G.A.. 1977. Foods of juvenile, brood hen, and post breeding pintails in North Dakota. Condor 79: 504507.Google Scholar
Krull, J.N. 1970. Aquatic plant–macroinvertebrate associations and waterfowl. J. Wildl. Mgmt 34: 707718.Google Scholar
Lapage, G. 1961. A list of the parasitic Protozoa, helminthes, and Arthropoda recorded from species of the family Anatidae (ducks, geese, and swans). Parasitology 51: 1.Google Scholar
Loucks, O.L. 1981. The littoral zone as a wetland: its contribution to water quality, pp. 125–138 in Richardson, B. (Ed.), Selected Proceedings of the Midwest Conference on Wetland Values and Management. Minn. Wat. Plann. Bd, St. Paul. 660 pp.Google Scholar
Mathias, J.A., and Papst, M.. 1981. Growth, survival and distribution of Gammarus lacustris (Crustacea - Amphipoda) stocked into ponds. Can. Tech. Rep. Fish. Aquat. Sci. 989. 11 pp.Google Scholar
McDonald, M.E. 1955. Cause and effects of a die-off of emergent vegetation. J. Wildl. Mgmt 19: 2435.Google Scholar
McDonald, M.E. 1969. Annotated bibliography of helminths of waterfowl (Anatidae). Spec. sci. Rep. U.S. Bur Sport Fish. Wildl. 125. 629 pp.Google Scholar
McDonald, M.E. 1974. Key to nematodes reported in waterfowl. Res. Bull. U.S. Bur. Sport Fish. Wildl. 122. 49 pp.Google Scholar
McKnight, D.E., and Low, J.B.. 1969. Factors affecting waterfowl production of a spring-fed salt marsh in Utah. Trans. N. Am. Wildl. Nat. Resour. Conf. 34: 307314.Google Scholar
Meanley, B. 1961. Late summer food of red-winged blackbirds in a fresh tidal river marsh. Wilson Bull. 73: 3640.Google Scholar
Milne, H. 1976. Some factors affecting egg production in waterfowl populations. Wildfowl 27: 141142.Google Scholar
Mott, D.F., West, R.R., DeGrazio, J.W., and Guarino, J.L.. 1972. Foods of the red-winged blackbird in Brown County, South Dakota. J. Wildl. Mgmt 36: 983987.Google Scholar
Moyle, J.B. 1961. Aquatic invertebrates as related to larger water plants and waterfowl. Rep. Minn. Dep. Conserv. 233. 24 pp.Google Scholar
Munro, J.A. 1941. The grebes: studies of waterfowl in British Columbia. Occ. Pap. Brit. Columbia Prov. Mus 3. 71 pp.Google Scholar
Murkin, H.R. 1979. Response by waterfowl and blackbirds to an experimentally manipulated cattail marsh. M.Sc. thesis, McGill Univ., Montreal. 97 pp.Google Scholar
Murkin, H.R. 1983. Responses by aquatic macroinvertebrates to prolonged flooding of marsh habitat. Ph.D. thesis, Utah State Univ., Logan. 126 pp.Google Scholar
Murkin, H.R., Abbott, P.G., and Kadlec, J.A.. 1983. A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshwat. Invert. Biol. 2: 99106.Google Scholar
Murkin, H.R., and Kadlec, J.A.. 1986. Relationships between waterfowl and macroinvertebrate densities in a northern prairie marsh. J. Wildl. Mgmt 50: 212217.Google Scholar
Murkin, H.R., Kaminski, R.M., and Titman, R.D.. 1982. Responses by dabbling ducks and aquatic invertebrates to an experimentally manipulated cattail marsh. Can. J. Zool. 60: 23242332.Google Scholar
Nudds, T.D., and Bowlby, J.M.. 1984. Predator–prey size relationships in North American dabbling ducks. Can. J. Zool. 62: 20022008.Google Scholar
Nudds, T.D., and Kaminski, R.M.. 1984. Sexual size dimorphism in relation to resource partitioning in North American dabbling ducks. Can. J. Zool. 62: 20092012.Google Scholar
Orians, G.H. 1966. Food of nestling yellow-headed blackbirds, Cariboo Parklands, British Columbia. Condor 68: 321337.Google Scholar
Perret, N.G. 1962. The spring and summer foods of the common mallard (Anas platyrhynchos platyrhynchos L.) in southern Manitoba. M.Sc. thesis, Univ. British Columbia, Vancouver. 82 pp.Google Scholar
Peterson, S.R., and Ellarson, R.S.. 1977. Food habits of oldsquaws wintering on Lake Michigan. Wilson Bull. 89: 8191.Google Scholar
Pringle, J.S. 1980. An introduction to wetland classification in the Great Lakes region. Tech. Bull. R. Bot. Gdns 10. 11 pp.Google Scholar
Rabe, F.W., and Gibson, F.. 1984. The effects of macrophyte removal on the distribution of selected invertebrates in a littoral environment. J. Freshwat. Ecol. 2: 359371.Google Scholar
Robel, R.J. 1962. Changes in submersed vegetation following a change in water level. J. Wildl. Mgmt 26: 221224.Google Scholar
Rogers, J.P., and Korschgen, L.J.. 1966. Foods of lesser scaup on breeding, migration, and wintering areas. J. Wildl. Mgmt 30: 258264.Google Scholar
Rosen, M.N. 1971. Botulism, pp. 5974in Davis, J.W., Anderson, R.C., Karstad, L., and Trainer, D.O. (Eds.), Infections and Parasitic Diseases of Wild Birds. Iowa State Univ. Press, Ames.Google Scholar
Sargeant, A.B. 1970. The red fox. pp. 105109in Cahalane, V.H. (Ed.), Alive in the Wild. Prentice Hall, Englewood Cliffs.Google Scholar
Schroeder, L.D. 1973. A literature review on the role of invertebrates in waterfowl management. Spec. Rep. Colo. Div. Wildl. 29. 13 pp.Google Scholar
Scott, W.B., and Crossman, R.J.. 1973. Freshwater fishes of Canada. Bull. Fish. Res. Bd Can. 184. 966 pp.Google Scholar
Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London. 610 pp.Google Scholar
Seigfried, W.R. 1973. Summer food and feeding of the ruddy duck in Manitoba. Can. J. Zool. 51: 12931297.Google Scholar
Serie, J.R., and Swanson, G.A.. 1976. Feeding ecology of breeding gadwalls on saline wetlands. J. Wildl. Mgmt 40: 6981.Google Scholar
Sigler, W.F. 1958. The ecology and use of carp in Utah. Bull. Utah agric. Exp. Stn 405. 63 pp.Google Scholar
Skuhravy, V. 1978. Invertebrates: destroyers of common reed. pp. 376387 in Dykyjova, D., and Kvet, J. (Eds.), Pond Littoral Ecosystems: Structure and Functioning. Springer-Verlag, New York.Google Scholar
Smith, L.M., and Kadlec, J.A.. 1983. Seed banks and their role during drawdown of a North American marsh. J. appl. Ecol. 20: 673684.Google Scholar
Snelling, J.C. 1968. Overlap in feeding habits of red-winged blackbirds and common grackles nesting in a cattail marsh. Auk 85: 560585.Google Scholar
Speight, M.C.D., and Blackith, R.E.. 1983. The animals, pp. 349365in Gore, A.J.P. (Ed.), Ecosystems of the World. Vol. 4A. Mires: Swamp, Bog, Fen and Moor. General Studies. Elsevier, New York.Google Scholar
Street, M. 1977. The food of mallard ducklings in a wet gravel quarry, and its relation to duckling survival. Wildfowl 28: 113125.Google Scholar
Sugden, L.G. 1973. Metabolizable energy of wild duck foods. Prog. Note Can. Wildl. Serv. 35: 14.Google Scholar
Swanson, G.A., Krapu, G.L., and Nelson, H.K.. 1972. Mercury levels in tissues of ducks collected in south-central North Dakota. Proc. N. Dak. Acad. Sci. 25: 8493.Google Scholar
Swanson, G.A., Krapu, G.L., and Serie, J.R.. 1979. Foods of laying female dabbling ducks on the breeding grounds, pp. 4757in Bookhout, T.A. (Ed.), Waterfowl and Wetlands – An Integrated Review. La Crosse Printing, La Crosse.Google Scholar
Swanson, G.A., and Meyer, M.I.. 1973. The role of invertebrates in the feeding ecology of Anatinae during the breeding season, pp. 143–185 in Waterfowl Habitat Management Symposium, Moncton. 306 pp.Google Scholar
Swanson, G.A., Meyer, M.I., and Serie, J.R.. 1974. Feeding ecology of breeding blue-winged teals. J. Wildl. Mgmt 38: 396407.Google Scholar
Taylor, T.S. 1978. Spring foods of migrating blue-winged teals on seasonally flooded impoundments. J. Wildl. Mgmt 42: 900903.Google Scholar
Toner, E.D., and Lawler, G.H.. 1969. Synopsis of biological data on the pike (Esox lucius L.). FAO Fish. Synopsis 30. Fd Agric. Orgn, Rome. 38 pp.Google Scholar
Tuck, L.M. 1972. The snipes. Monogr. Ser. Can. Wildl. Serv. 5. 429 pp.Google Scholar
van der Valk, A.G., and Davis, C.B.. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322335.Google Scholar
Verts, B.J. 1967. The Biology of the Striped Skunk. Univ. Illinois Press, Chicago. 219 pp.Google Scholar
Voigts, D.K. 1973. Food niche overlap of two Iowa marsh icterids. Condor 75: 392399.Google Scholar
Voigts, D.K. 1976. Aquatic invertebrate abundance in relation to changing marsh vegetation. Am. Midl. Nat. 95: 313322.Google Scholar
Weller, M.W. 1978. Management of freshwater marshes for wildlife, pp. 267284in Good, R.E., Simpson, R.L., and Whigham, D.F. (Eds.), Freshwater Wetlands: Ecological Processes and Management Potential. Academic Press, New York.Google Scholar
Weller, M.W. 1981. Freshwater Marshes: Ecology and Wildlife Management. Univ. Minnesota Press, Minneapolis. 146 pp.Google Scholar
Weller, M.W., and Spatcher, C.E.. 1965. Roleof habitat in the distribution and abundance of marsh birds. Spec. Rep. Iowa agric. Home Econ. Exp. Stn 43: 131.Google Scholar
Werner, E.E., and Hall, D.J.. 1979. Foraging efficiency and habitat switching in competing sunfishes. Ecology 60: 256264.Google Scholar
White, D.C. 1985. Lowland hardwood wetland invertebrate community and production in Missouri. Arch. Hydrobiol. 103: 509533.Google Scholar
Wiggins, G.B., Mackay, R.J., and Smith, I.M.. 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol. Suppl. 58: 97206.Google Scholar
Wobeser, G.A. 1981. Diseases of Wild Waterfowl. Plenum Press, New York. 300 pp.Google Scholar
Wrubleski, D.A. 1984. Species composition, emergence phenologies, and relative abundances of Chironomidae (Diptera) from the Delta Marsh, Manitoba, Canada. M.Sc. thesis, Univ. Manitoba, Winnipeg. 115 pp.Google Scholar
Zoltai, S.C. 1987. Peatlands and marshes in the wetland regions of Canada, pp. 513in Rosenberg, DM., and Danks, H.V. (Eds.), Aquatic Insects of Peatlands and Marshes in Canada. Mem. ent. Soc. Can. 140.Google Scholar