Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T13:35:25.275Z Has data issue: false hasContentIssue false

THE INSECT FAUNA AND SOME OTHER CHARACTERISTICS OF NATURAL SALT SPRINGS ON SALTSPRING ISLAND, BRITISH COLUMBIA

Published online by Cambridge University Press:  31 May 2012

Richard A. Ring*
Affiliation:
Biology Department, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
Get access

Abstract

The natural salt springs on Saltspring Island, southwestern British Columbia, originate from a source at least 1000 m deep and are distinct in chemical composition not only from the surrounding seawater but also from the groundwater-based salt springs on nearby Mayne Island. Spring water is approximately 2.2-fold more saline than average seawater and is characterized by having significantly higher levels of chloride, sodium, sulphate, silica, iron, alumina, and boron; similar levels of calcium, potassium, fluoride, and nitrogen; but less magnesium. The pH levels in different springs vary between 7.3 and 7.9, compared with pH 8.2 for average surface seawater. Near-surface water temperatures range from 7 °C in mid-winter to 16–21 °C in late summer.The flora and fauna that exploit this unique habitat are characterized by halophilic species known from other saline environments such as saline lakes, brackish water, beaches, and the intertidal zone. Organisms that have been isolated and identified include the following: seven species of bacteria, none of which depends exclusively on a saline environment; a blue-green alga that lives within the springs; an abundant filamentous green alga; and halophilic higher plants and grasses. Two species of spiders [Zelotes sp. (Gnaphosidae) and Pardosa sp. (Lycosidae)] are active in the salt-impregnated areas surrounding the springs.Collembola are represented by Anurida sp. (Poduridae); and insects by Saldula comatula (Saldidae, Hemiptera), the chironomids (Chironomidae, Diptera) Thalassosmittia marina plus two unidentified species, brine flies (Ephydridae, Diptera), and two unidentified cyclorrhaphan dipterans. Among the Hymenoptera, there are two species of Eupteromalus (Pteromalidae), Cyrtogaster capitanea (Pteromalidae), Urolepis rufipes (Pteromalidae), and Stigmus sp. (Pemphredonidae). Ants (Formica spp.) and yellowjackets (Vespula sp.) are frequent foragers in the immediate vicinity of the salt spring. There are three species of Coleoptera, Bembidion indistinctum (Carabidae), Ochthebius lecontei (Hydraenidae), and Thicanus mimus (Anthicidae). These insects are discussed in terms of their distribution within, and preference for, saline environments.

Résumé

Les fontaines salines naturelles de Saltspring Island, au sud-ouest de la Colombie Britannique, originent d'une source profonde de 1000 m au moins et se distinguent par leur composition chimique non seulement de l'eau de mer environnante, mais aussi de la nappe d'eau souterraine des fontaines salines de Mayne Island qui se trouve tout près. L'eau saline des fontaines est approximativement 2,2 fois plus salée que l'eau de mer et se distingue par des concentrations plus élevés de chlorure, sodium, sulfate, silice, fer, aluminium et bore; des concentrations semblables de calcium, potassium, fluorure et azote; mais une concentration plus basse de magnésium. Les niveaux de pH des fontaines varient entre 7,3 et 7,9, comparer à 8,2 en moyenne pour l'eau de surface de la mer. Les températures près de la surface varient de 7 °C en hiver à 16–21 °C tard en été.

La végétation et la faune qui exploitent cet habitat unique sont distinguées par des espèces halophiles, connues d'autres environnements salins tels que les lacs salins, l'eau saumâtre, les plages et la zone intertidale. Les organismes qui ont été isolés et identifiés sont : sept espèces de bactéries, aucune ne dépendant exclusivement d'un environnement salin; une algue bleue-verte qui vit en dedans de la fontaine; une algue verte filamenteuse abondante; des plantes vasculaires et des herbes halophiles. Deux espèces d'araignées [Zelotes sp. (Gnaphosidae) etPardosa sp. (Lycosidae)] sont actives dans les environs couvert de sels autour des fontaines.

Les Collemboles sont représentés par Anurida sp. (Poduridae) et les insectes comme suit : Saldula comatula (Saldidae, Hemiptera); Thalassosmittia marina (Chironomidae, Diptera) et deux espèces non-identifiées, une espèce de mouche à saumure (Ephydridae, Diptera), deux espèces de diptères cyclorrhaphes; et deux espèces de Eupteromalus (Pteromalidae, Hymenoptera), Cyrtogaster capitanea (Pteromalidae, Hymenoptera), Urolepis rufipes (Pteromalidae, Hymenoptera) et Stigmus sp. (Pemphredonidae, Hymenoptera). Les fourmis (Formica spp.) et les guêpes (Vespula sp.) s'alimentent fréquemment juste aux alentours de la fontaine saline. Trois espèces de Coléoptères s'y trouvent, à savoir : Bembidion indistinctum (Carabidae), Ochthebius lecontei (Hydraenidae) et Thicanus mimus (Anthicidae). Ces insectes font la base d'une discussion en termes de leur distribution et de leur préférence dans les environnements salins.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anon. 1982. Water quality check programme interpretation booklet. Environmental Lab., B.C. Ministry of the Environment and the B.C. Ministry of Health, Victoria B.C.Google Scholar
Bayly, I.A.E. 1972. Saline tolerance and osmotic behaviour of animals in athalassic saline and marine hypersaline waters. A. Rev. Ecol. Syst. 3: 233268.Google Scholar
Buchanan, R.E., and Gibbons, N.E. (Eds.). 1974. Bergey's Manual of Determinative Bacteriology, 8th ed. The Williams and Wilkins Co., Baltimore, MD. 1268 pp.Google Scholar
Buck, J. 1965. Hydration and respiration in chironomids. J Insect Physiol. 11: 15031516.Google Scholar
Dakin, R.A. 1975. The origins of salts in groundwaters of Mayne Island, British Columbia. M.Sc. thesis, University of Waterloo, Waterloo, Ont., Canada. Unpublished.Google Scholar
Dakin, R.A., Farvolden, R.N., Cherry, J.A., and Fritz, P.. 1983. Origin of dissolved solids in groundwaters of Mayne Island, British Columbia, Canada. J. Hydrol. 63: 233270.Google Scholar
Evans, W.G. 1980. Insecta, Chilopoda and Arachnida: Insects and allies, pp. 641–658 in Morris, R.H., Abbott, D.P., and Haderlie, E.C. (Eds.), Intertidal Invertebrates of California. Stanford University Press, Stanford, CA. 690 pp.Google Scholar
Evans, W.G. 1988. Chemically mediated habitat recognition in shore insects (Coleoptera: Carabidae; Hemiptera: Saldidae). J Chem. Ecol. 14: 14411454.Google Scholar
Hatch, M.H. 1953. The Beetles of the Pacific Northwest. Part 1: Introduction and Adephaga. University of Washington Press, Seattle, WA. 340 pp.Google Scholar
Hitchcock, C.L., and Cronquist, A.. 1973. Flora of the Pacific Northwest. University of Washington Press, Seattle, WA. 730 pp.Google Scholar
Hitchcock, C.L., Cronquist, A., Ownbey, M., and Thompson, J.W.. 1969. Vascular Plants of the Pacific Northwest. Part 1. University of Washington Press, Seattle, WA. 914 pp.Google Scholar
Hodge, W.S. 1977. A preliminary geohydrological study of Saltspring Island. Internal Report, Water Investigations Branch, B.C. Ministry of the Environment, Victoria B.C.Google Scholar
Imms, A.D. 1906. Anurida. Liverpool Mar. Biol. Commun. Mem. 13: 199.Google Scholar
Kennish, M.J. 1989. Practical Handbook of Marine Science. CRC Press Inc., Boca Raton, FL. 710 pp.Google Scholar
Krombein, K.V., Hurd, P.D. Jr.,, Smith, D.R., and Burks, B.D.. 1979. Catalog of Hymenoptera in America North of Mexico, Vol. 1. Smithsonian Institution Press, Washington, DC. pp. 820822.Google Scholar
Lange, R., and Mostad, A.. 1967. Cell volume regulations in osmotically adjusting marine animals. J. exp. mar. Biol. Ecol. 1: 209219.Google Scholar
Morley, R.L., and Ring, R.A.. 1972 a. The intertidal Chironomidae (Diptera) of British Columbia. I. Keys to their life stages. Can. Ent. 104: 10931098.Google Scholar
Morley, R.L., and Ring, R.A.. 1972 b. The intertidal Chironomidae (Diptera) of British Columbia. II. Life history and population dynamics. Can. Ent. 104: 10991121.Google Scholar
Parkinson, A., and Ring, R.A.. 1983. Osmoregulation and respiration in a marine chironomid larva, Paraclunio alaskensis Coquillett (Diptera, Chironomidae). Can. J. Zool. 61: 19371943.Google Scholar
Perkins, P.D. 1980. Aquatic beetles of the family Hydraenidae in the western hemisphere: Classification, biogeography and inferred phylogeny (Insecta: Coleoptera). Quaest. ent. 16: 3554.Google Scholar
Phillips, J.E., and Meredith, J.. 1969. Osmotic and ionic regulation in a saltwater mosquito larva Aedes campestris. Am. Zool. 9: 588.Google Scholar
Polhemus, J.T. 1976. Shore bugs (Hemiptera: Saldidae, etc.). pp. 225262in Cheng, L. (Ed.), Marine Insects. North-Holland Publishing Co., Amsterdam.Google Scholar
Ring, R.A. 1987. Intertidal insects of B.C. Bull. Can. Soc. Zool. 18: Abstract 67.Google Scholar
Saunders, L.G. 1928. Some marine insects of the Pacific coast of Canada. Ann. ent. Soc. Am. 21: 521545.Google Scholar
Simpson, K.W. 1976. Shore flies and brine flies (Diptera: Ephydridae). pp. 465495in Cheng, L. (Ed.), Marine Insects. North-Holland Publishing Co., Amsterdam.Google Scholar
Sutcliffe, D.W. 1960. Osmotic regulation in the larvae of some euryhaline Diptera. Nature, Lond. 187: 331332.Google Scholar
Sutcliffe, D.W. 1961. Studies on salt and water balance in caddis larvae (Trichoptera). J exp. Biol. 38: 501530.Google Scholar
Topp, W., and Ring, R.A.. 1988 a. Adaptations of Coleoptera to the marine environment. I. Observations on rove beetles (Staphylinidae) from sandy beaches. Can. J. Zool. 66: 24642468.Google Scholar
Topp, W., and Ring, R.A.. 1988 b. Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can. J. Zool. 66: 24692474.Google Scholar