Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T14:47:30.024Z Has data issue: false hasContentIssue false

GEOGRAPHIC DISTRIBUTION AND BIOGEOGRAPHY OF REPRESENTATIVE SPECIES OF XERIC GRASSLAND-ADAPTED NEARCTIC LYGAEIDAE IN WESTERN NORTH AMERICA (INSECTA: HETEROPTERA)

Published online by Cambridge University Press:  31 May 2012

G.G.E. Scudder*
Affiliation:
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
Get access

Abstract

This paper outlines the known distribution of eight xeric grassland-adapted species of Lygaeidae, and examines these distributions with respect to the glacial history of North America during the Pleistocene, and past and present distribution of grassland vegetation. Four of these species (Neosuris castanea, Sisamnes claviger, Ligyrocoris latimarginatus, and Melanopleurus perplexus) probably survived the Pleistocene in refugia south of the Late Wisconsinan ice sheet. Differences in climatic requirements may explain the variations in geographic distribution exhibited by these four insects and a methodology for testing this is discussed. The four other species (Crophius ramosus, Kolenetrus plenus, Slaterobius insignis, and Emblethis vicarius) may have occurred in the north prior to 1.2 mya and survived the Late Pleistocene in both the northern Beringian refugium and in southern refugia. Molecular systematics, especially use of DNA restriction site or sequence data, might provide the evidence needed to test historical biogeographic postulates based on the extant distribution of these species.

Résumé

Cet article examine la répartition connue de huit espèces de Lygaeidae adaptées aux prairies sèches à la lumière de l'histoire des glaciations du Pléistocène en Amérique du Nord et de la répartition présente et passée de la végétation de prairie. Quatre de ces espèces (Neosuris castanea, Sisamnes claviger, Ligyrocoris latimarginatus et Melanopleurus perplexus) ont probablement survécu dans des refuges situés au sud des glaces à la fin du Wisconsinien. Des différences reliées aux besoins climatiques de chaque espèce peuvent expliquer les variations dans la répartition géographique de ces quatre insectes et une méthodologie pour éprouver cette hypothèse est proposée. Les quatre autres espèces (Crophius ramosus, Kolenetrus plenus, Slaterobius insignis et Emblethis vicarius) étaient peut-être présentes dans le nord il y a plus de 1,2 millions d'années et ont pu survivre aux glaciations de la fin du Pléistocène dans le refuge du nord béringien et dans des refuges du sud. La systématique moléculaire, particulièrement le repérage de sites ou de séquences d'ADN par des enzymes de restriction, pourrait sans doute fournir les données nécessaires pour éprouver les hypothèses biogéographiques historiques basées sur la répartition actuelle de ces espèces. [Traduit par la rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, T.A. 1975. Late Quaternary environmental history of the Tanana Valley, Alaska. Ohio State Univ: Inst. Polar Stud. Rep. 54.Google Scholar
Ager, T.A. 1982. Vegetational history of western Alaska during the Wisconsinan glacial interval and the Holocene. pp. 7593in Hopkins, D.M., Matthews, J.V. Jr.,, Schweger, C.E., and Young, S.B. (Eds.), Paleoecology of Beringia. Academic Press, Inc., New York, NY.Google Scholar
Ager, T.A. 1983. Holocene vegetational history of Alaska, pp. 128–141 in Wright, H.J. Jr., (Ed.), Late-Quaternary Environments of the United States. Vol. 2. The Holocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Ager, T.A., and Brubaker, L.. 1985. Quaternary palynology and vegetational history of Alaska. pp. 353–384 in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Anderson, R.S. 1984. Connatichela artemisiae, a new genus and species of weevil from the Yukon Territory (Coleoptera: Curculionidae: Leptopiinae): Taxonomy, paleontology, and biogeography. Can. Ent. 116: 15711580.Google Scholar
Anderson, T.W., Mathewes, R.W., and Schweger, C.E.. 1989. Holocene climatic trends with special reference to the Hypsithermal interval. pp. 520–538 in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 7. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Annas, R.M. 1974. Ecosystems on the steppes of the dry subzone of the Boreal White and Black Spruce Zone of the southern Yukon. pp. 4043in Krajina, V.J., Progress Report, NRC Grant No. A-92, University of British Columbia, Vancouver, B.C.Google Scholar
Ashlock, P.D., and Slater, A.. 1988. Family Lygaeidae. pp. 167–245 in Henry, T.J., and Froeschner, R.C. (Eds.), Catalog of the Heteroptera, or True Bugs, of Canada and the Continental United States. E.J. Brill, Leiden, New York, Kobenhavn, Koln.Google Scholar
Ashworth, A.C. 1979. Quaternary Coleoptera studies in North America: Past and present, pp. 395–406 in Erwin, T.L., Ball, G.E., and Whitehead, D.R. (Eds.), Carabid Beetles; Their Evolution, Natural History, and Classification. Dr. W. Junk, The Hague, the Netherlands.Google Scholar
Avise, J.C. 1986. Mitochondrial DNA and the evolutionary genetics of higher animals. Phil. Trans. R. Soc. Lond. B. 312: 325342.Google Scholar
Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A., and Saunders, N.C.. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. A. Rev. Ecol. Syst. 18: 489522.Google Scholar
Avise, J.C., Bermingham, E., Kessler, L.G., and Saunders, N.C.. 1984. Characterization of mitochondrial DNA variability in a hybrid swarm between sub-species of bluegill sunfish (Lepomis macrochirus). Evolution 38: 931941.Google Scholar
Avise, J.C., C., Giblin-Davidson, Laeim, J., Patten, J.C., and Lansman, R.A.. 1979. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc. natn. Acad. Sci. U.S.A. 76: 66946698.Google Scholar
Avise, J.C., Helfman, G.S., Saunders, N.C., and Hales, L.S.. 1986. Mitochondrial DNA differentiation in North American eels: Population genetic consequences of an unusual life history pattern. Proc. natn. Acad. Sci. U.S.A. 83: 43504354.Google Scholar
Avise, J.C., Lansman, R.A., and Shade, R.O.. 1979. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. 1. Population structure and evolution in the genus Peromyscus. Genetics 92: 279295.Google Scholar
Avise, J.C., and Saunders, N.C.. 1984. Hybridization and introgression among species of sunfish (Lepomis): Analysis by mitochondrial DNA and allozyme markers. Genetics 108: 237255.Google Scholar
Axelrod, D. 1985. Rise of the grassland biome, central North America. Bot. Rev. 51: 163201.Google Scholar
Baker, R.G., and Wain, K.A.. 1985. Quaternary pollen records from the Great Plains and central United States. pp. 191–203 in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.). Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Ball, G.E. 1970. Barriers and southward dispersal of the holarctic boreo-montane element of the family Carabidae in the mountains of Mexico. An. Esc. nac. Cienc. biol., Mex. 17: 91112.Google Scholar
Barber, H.G. 1918. Concerning Lygaeidae — No. 2. Jl N. Y. ent. Soc. 26: 4960.Google Scholar
Barber, H.G. 1938. A review of the genus Crophius Stål, with descriptions of three new species (Hemiptera-Heteroptera: Lygaeidae). Jl N. Y. ent. Soc. 46: 313319.Google Scholar
Barber, H.G. 1953. A second revision of the genus Ptochiomera Say and its allies (Hemiptera, Lygaeidae). Proc. ent. Soc. Wash. 55: 1927.Google Scholar
Barnosky, C.W. 1985. Late Quaternary vegetation in the southwestern Columbia Basin, Washington. Quat. Res. 23: 109122.Google Scholar
Barnosky, C.W., Anderson, P.M., and Bartlein, P.J.. 1987. The northwestern U.S. during deglaciation; vegetational history and paleoclimatic implications, pp. 289–321 in Ruddiman, W.F., and Wright, H.E. Jr., (Eds.), North America and Adjacent Oceans during the Last Glaciation. The Geology of North America. Vol. K-3. Geological Society of America, Inc., Boulder. CO.Google Scholar
Bermingham, E., and Avise, J.C.. 1986. Molecular zoogeography of freshwater fishes in the southern United States. Genetics 113: 939965.Google Scholar
Bernatchez, L., and Dodson, J.J.. 1990. Mitochondrial DNA variation among anadromous populations of cisco (Coregonus artedii) as revealed by restriction analysis. Can. J. Fish, aquat. Sci. 47: 533543.Google Scholar
Bernatchez, L., and Dodson, J.J.. 1991. Phylogeographic structure in mitochondrial DNA of the lake whitefish (Coreogonus clupeaformis) and its relation to Pleistocene glaciations. Evolution 45: 10161035.Google Scholar
Billington, N., and Hebert, P.D.N.. 1988. Mitochondrial DNA variation in Great Lakes Walleye (Stizostedion vitreum) populations. Can. J. Fish. aquat. Sci. 45: 643654.Google Scholar
Blatchley, W.S. 1934. Notes on a collection of Heteroptera taken in winter in the vicinity of Los Angeles, California. Trans. Am. ent. Soc. 60: 116.Google Scholar
Brown, L. 1985. The Audubon Society Nature Guides. Grasslands. Alfred A. Knopf, New York, NY.Google Scholar
Brown, W.M. 1983. Evolution of animal mitochondrial DNA. pp. 62–88 in Nei, M., and Koehn, R.K. (Eds.), Evolution of Genes and Proteins. Sinauer, Sunderland, MA.Google Scholar
Brown, W.M. 1985. The mitochondrial genome of animals, pp. 95–130 in MacIntyre, R.J. (Ed.), Molecular Evolutionary Genetics. Plenum Press, New York, NY.Google Scholar
Brown, W.M., George, M. Jr.,, and Wilson, A.C.. 1979. Rapid evolution of animal mitochondrial DNA. Proc. natn. Acad. Sci. U.S.A. 76: 19671971.Google Scholar
Bryant, V.M. Jr.,, and Holloway, R.G.. 1985. A Late-Quaternary paleoenvironmental record of Texas: An overview of the pollen evidence, pp. 39–70 in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Burns, J.A. 1990. Paleontological perspectives on the ice-free corridor, pp. 61–66 in Agenbroad, L.D., Mead, J.I., and Nelson, L.W. (Eds.), Megafauna & Man. Discovery of America's Heartland. The Mammoth Site of Hot Springs, South Dakota, Inc., Scientific Papers Vol. 1. Hot Springs, SD.Google Scholar
Busby, J.R. 1986. A biogeoclimatic analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia. Aust. J. Ecol. 11: 17.Google Scholar
Caccone, A., Amato, G.D., and Powell, J.R.. 1988. Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics 118: 671683.Google Scholar
Cain, S.A., Nelson, M., and McLean, W.. 1937. Andropogonetum Hempsteadi: A Long Island grassland vegetation type. Am. midl. Nat. 18: 334350.Google Scholar
Caughley, G., Short, J., Grigg, G.C., and Nix, H.A.. 1987. Kangaroos and climate: An analysis of distribution. J. anim. Ecol. 56: 751756.Google Scholar
Clague, J.J. 1989 a. Cordilleran ice sheet, pp. 40–42 in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 1. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Clague, J.J. 1989 b. Relationships of Cordilleran and Laurentide glaciers, pp. 42–43 in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 1. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Clague, J.J., Hebda, R.J., and Mathewes, R.W.. 1990. Stratigraphy and paleoecology of Pleistocene interstadial sediments, central British Columbia. Quat. Res. 34: 208226.Google Scholar
Conard, H.S. 1935. The plant associations of central Long Island. A study in descriptive plant sociology. Am. midl. Nat. 16: 433516.Google Scholar
Coupland, R.T. 1950. Ecology of mixed prairie in Canada. Ecol. Monogr. 20: 271315.Google Scholar
Coupland, R.T. 1961. A reconsideration of grassland classification in the northern Great Plains of North America. J. Ecol. 49: 135167.Google Scholar
Cwynar, L.C., and Ritchie, J.C.. 1980. Arctic–steppe–tundra: A Yukon perspective. Science 208: 13751377.Google Scholar
Davis, M.B. 1967. Late-glacial climate in Northern United States: A comparison of New England and the Great Lakes Region, pp. 11–43 in Cushing, E.J., and Wright, H.E. Jr., (Eds.), Quaternary Paleoecology. Yale University Press, New Haven and London.Google Scholar
Deevey, E.S. 1949. Biogeography of the Pleistocene. Part 1. Europe and North America. Bull. geol. Soc. Am. 60: 13151416.Google Scholar
Delcourt, H.R. 1979. Late Quaternary vegetation history of the Eastern highland rim and adjacent Cumberland Plateau of Tennessee. Ecol. Monogr. 49: 255280.Google Scholar
Delcourt, P.A., and Delcourt, H.R.. 1981. Vegetation maps for eastern North America: 40,000 yr BP to the present, pp. 123165in Romans, R.C. (Ed.), Geobotany II. Plenum Press, New York & London.Google Scholar
Delcourt, P.A., and Delcourt, H.R.. 1987. Long-term forest dynamics of the temperate zone. A case study of Late-Quaternary forests in eastern North America. Springer-Verlag, New York, NY.Google Scholar
Distant, W.L. 1882. Insecta. Rhynchota. Hemiptera–Heteroptera. Biol. cent. Am. Het. Lygaeidae. Volume 1.Google Scholar
Distant, W.L. 1893. Insecta. Rhynchota. Hemiptera–Heteroptera. Biol. cent. Am. Het. Lygaeidae. Volume 1. Suppl. pp. 387462.Google Scholar
Dorf, E. 1959. Climate changes of the past and present. Contr. Mus. Paleont. Univ. Mich. 13: 181210.Google Scholar
Douglas, G.W. 1974. Montane zone vegetation of the Alsek River region, southwestern Yukon. Can. J. Bot. 52: 25052532.Google Scholar
Echelle, A.A., and Dowling, T.E.. 1992. Mitochondrial DNA variation and evolution of the Death Valley Pupfishes (Cyprinodon, Cyprinodontidae). Evolution 46: 193206.Google Scholar
Endler, J.A. 1982. Problems in distinguishing historical from ecological factors in biogeography. Am. Zool. 22: 441452.Google Scholar
Ferris, S.D., Wilson, A.C., and Brown, W.M.. 1981. Evolutionary tree for apes and humans based on cleavage maps of mitochondrial DNA. Proc. natn. Acad. Sci. U.S.A. 78: 24322436.Google Scholar
Gaudreau, D.C., and Webb, T. III. 1985. Late-Quaternary pollen stratigraphy and isochrone maps for the north-eastern United States, pp. 247280in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Giterman, R.E., Sher, A.V., and Matthews, J.V., Jr. 1982. Comparison of the development of tundra–steppe environments in West and East Beringia: Pollen and macrofossil evidence from key sections, pp. 43–73 in Hopkins, D.M., Matthews, J.V. Jr.,, Schweger, C.E., and Young, S.B. (Eds.), 1982. Paleoecology of Beringia. Academic Press, Inc., New York, NY.Google Scholar
Grewe, P.M., and Hebert, P.D.N.. 1988. Mitochondrial DNA diversity among broodstocks of the take trout, Salvelinus namaycush. Can. J. Fish, aquat. Sci. 45: 21142122.Google Scholar
Guthrie, R.D. 1985. Woolly arguments against the mammoth steppe — a new look at the palynological data. Q. Rev. Archaeol. 6: 916.Google Scholar
Guthrie, R.D. 1990. Frozen Fauna of the Mammoth Steppe. The Story of Blue Babe. University of Chicago Press, Chicago & London.Google Scholar
Gyllensten, U., and Wilson, A.C.. 1986. Mitochondrial DNA of salmonids: Inter- and intraspecific variability detected with restriction enzymes, pp. 301317in Utter, F., and Ryman, N. (Eds.), Population Genetics and Fishery Management. University of Washington Press, Seattle, WA.Google Scholar
Hall, S.A. 1985. Quaternary pollen analysis and vegetational history of the southwest, pp. 95123in Bryant, V.M. Jr.,, Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Hamilton, K.G.A. 1990. Grasslands of Ontario and surrounding areas. Biol. Surv. Can. (Terr. Arthropods). Newsletter Arthropods of Canadian Grasslands 5: 210.Google Scholar
Harrison, R.G. 1991. Molecular changes at speciation. A. Rev. Ecol. Syst. 22: 281308.Google Scholar
Heady, H.F. 1988. Valley grassland, pp. 491514in Barbour, M.G., and Major, J. (Eds.), Terrestrial Vegetation of California. New expanded edition. California Native Plant Society. Spec. Puhl. 9.Google Scholar
Hebda, R.J. 1982. Postglacial history of grasslands of southern British Columbia and adjacent regions, pp. 157191in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria, B.C.Google Scholar
Hebda, R.J. 1990. Radiocarbon dates from the east flank of the Coast Range of west central British Columbia and their significance to deglacial history. Can. Quat. Assoc. – Am. Quat. Assoc. First Joint Meeting, June 4–6, 1990 Abstracts, p. 19.Google Scholar
Hendrickson, G.O. 1930. Studies on the insect fauna of Iowa prairies. Iowa St. Coll. J. Sci. 4: 49179.Google Scholar
Heusser, C.J. 1989. North Pacific Coastal Refugia — the Queen Charlotte Islands in perspective, pp. 91106in Scudder, G.G.E., and Gessler, N. (Eds.), The Outer Shores. Queen Charlotte Islands Museum Press, Skidegate, B.C.Google Scholar
Heusser, L.E., and King, J.E.. 1988. North America with special emphasis on the development of the Pacific Coastal forest and prairie/forest boundary prior to the last glacial maximum, pp. 193236in Huntley, B., and Webb, T. III (Eds.), Vegetation History. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
Hillis, D.M. 1987. Molecular versus morphological approaches to systematics. A. Rev. Ecol. Syst. 18: 2342.Google Scholar
Hoefs, M., Cowan, I.McT., and Krajina, V.J.. 1975. Phytosociological analysis and synthesis of Sheep Mountain, southwestern Yukon Territory, Canada. Syesis (Suppl. 1) 8: 125228.Google Scholar
Holloway, R.G., and Bryant, V.M. Jr., 1985. Late-Quaternary pollen records and vegetational history of the Great Lakes region: United States and Canada, pp. 205245in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Hopkins, D.M. (Ed.). 1967. The Bering Land Bridge. Stanford University Press, Stanford, CA.Google Scholar
Hopkins, D.M., Matthews, J.V. Jr.,, Schweger, C.E., and Young, S.B. (Eds.). 1982. Paleoecology of Beringia. Academic Press, Inc., New York, NY.Google Scholar
Hopkins, D.M., Smith, P.A., and Matthews, J.V. Jr., 1981. Dated wood from Alaska and the Yukon: Implications for forest refugia in Beringia. Quat. Res. 15: 217249.Google Scholar
Humphrey, R.R. 1953. The Desert grassland, past and present. J. Range Mgmt. 6: 159164.Google Scholar
Humphrey, R.R. 1958. The Desert grassland. A history of vegetational change and an analysis of causes. Bot. Rev. 24: 193252.Google Scholar
Hutchinson, M.F., and Bischoff, R.J.. 1983. A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales. Aust. meteorol. Mag. 31: 179184.Google Scholar
Jacobson, G.L. Jr.,, Webb, T. III, and Grimm, E.C.. 1987. Patterns and rates of vegetation change during deglaciation of eastern North America, pp. 277288in Ruddiman, W.F., and Wright, H.E. Jr., (Eds.), North America and Adjacent Oceans during the Last Glaciation. The Geology of North America. Vol. K-3. Geological Society of America, Inc., Boulder, CO.Google Scholar
Kassler, K.C. 1979. Relicts of the Late-Pleistocene Arctic–steppe: Investigations of certain south-facing slopes in interior Alaska. B.A. thesis, Northern Studies Program, Middlebury College, Middlebury, VT.Google Scholar
King, J.E. 1981. Late Quaternary vegetational history of Illinois. Ecol. Monogr. 51: 4362.Google Scholar
King, P.B., and Beikman, H.M.. 1978. The Cenozoic Rocks: A Discussion to Accompany the Geologic Map of the United States. Prof. Pap. U.S. geol. Surv. 904: 82 pp.Google Scholar
Kissinger, D.G. 1973. A new weevil genus from America north of the Arctic Circle and note of fossils from Pliocene and Pleistocene sediments (Coleoptera: Curculionidae). Coleopts Bull. 27: 193200.Google Scholar
Klaussen, R.W. 1989. Quaternary geology of the southern Canadian interior plains, pp. 138173in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 2. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Krajina, V.J. 1965. Biogeoclimatic zones and biogeocoenoses of British Columbia. Ecol. West. North Am. 1: 117.Google Scholar
Krajina, V.J. 1969. Ecology of forest trees in British Columbia. Ecol. West. North Am. 2: 1146.Google Scholar
Krajina, V.J. 1975. Some observations on the three subalpine biogeoclimatic zones in British Columbia, Yukon and MacKenzie District. Phytocoenologia 2: 396400.Google Scholar
Lansman, R.A., Avise, J.C., Aquadro, C.F., Shapira, J.F., and Daniel, S.W.. 1983. Extensive genetic variation in the mitochondrial DNA's among geographic populations of the deer mouse, Peromyscus maniculatus. Evolution 37: 116.Google Scholar
Latorre, A., Barrio, E., Moya, A., and Ayala, F.J.. 1988. Mitochondrial DNA evolution in the Drosophila obscura group. Molec. Biol. Evol. 5: 717728.Google Scholar
Leopold, E.B. 1969. Late Cenozoic palynology. pp. 377438in Tschudy, R.H., and Scott, R.A. (Eds.), Aspects of Palynology. Wiley-Interscience, New York, NY.Google Scholar
Leopold, E.B., and Denton, M.F.. 1985. Miocene and Pliocene vegetation patterns of the northern Rocky Mountains. Proc. Pacific Division. Am. Assoc. Adv. Sci. 4(1): 34.Google Scholar
Leston, D. 1957. Spread potential and the colonization of islands. Syst. Zool. 6: 4146.Google Scholar
Lindberg, H. 1958. Hemiptera–Heteroptera from Newfoundland, collected by the Swedish–Finnish expedition of 1949 & 1951. Acta zool.fenn. 96: 25 pp.Google Scholar
Lindenmeyer, D.B., Nix, H.A., McMahon, J.P., Hutchinson, M.F., and Tanton, M.T.. 1991. The conservation of Leadbetter's Opossom, Gymnobetideus leadbetteri (McCoy): A case study of bioclimatic modelling. J. Biogeogr. 18: 371383.Google Scholar
Lindroth, C.H. 1970. Survival of animals and plants in ice-free refugia during the Pleistocene. Endeavour 29: 129134.Google Scholar
Looman, J. 1982. Grasslands of western North America: Festuca grasslands, pp. 209221in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria, B.C.Google Scholar
Mack, R.N., Bryant, V.M. Jr.,, and Fryxell, R.. 1976. Pollen sequence from the Columbia Basin, Washington: Reappraisal of Postglacial vegetation. Am. midl. Nat. 95: 390397.Google Scholar
MacNeil, D., and Strobeck, C.. 1987. Evolutionary relationships among colonies of Columbia ground squirrels as shown by mitochondrial DNA. Evolution 41: 873881.Google Scholar
Mandryk, C.A. 1990. Could humans survive the ice-free corridor?: Late-glacial vegetation and climate in west central Alberta, pp. 6779in Agenbroad, L.D., Mead, J.I., and Nelson, L.W. (Eds.), Megafauna & Man. Discovery of America's Heartland. The Mammoth Site of Hot Springs, South Dakota, Inc., Scientific Papers Vol. 1. Hot Springs, SD.Google Scholar
Martin, P.S. 1958. Pleistocene ecology and biogeography of North America, pp. 375–420 in Hubbs, C.L. (Ed.), Zoogeography. Am. Assoc. Adv. Sci. Publ. 51.Google Scholar
Mathewes, R.W. 1985. Paleobotanical evidence for climate change in southern British Columbia during Late-Glacial and Holocene Time. pp. 397422in Harington, C.R. (Ed.), Climate Change in Canada 5: Critical Periods in the Quaternary Climate History of Northern North America. Syllogeus 55.Google Scholar
Mathewes, R.W., and King, M.. 1989. Holocene vegetation, climate, and lake-level changes in the Interior Douglas-fir biogeoclimatic zone, British Columbia. Can. J. Earth Sci. 26: 18111825.Google Scholar
Mathewes, R.W., and Rouse, G.E.. 1975. Palynology and paleoecology of postglacial sediments from the lower Fraser River Canyon of British Columbia. Can. J. Earth Sci. 12: 745756.Google Scholar
Matthews, J.V. Jr., 1974. Quaternary environments at Cape Deceit (Seward Penninsula, Alaska): Evolution of a tundra ecosystem. Bull. geol. Soc. Am. 85: 13531384.Google Scholar
Matthews, J.V. Jr., 1975. Insects and plant macrofossils from two Quaternary exposures in the Old Crow-Porcupine region, Yukon Territory, Canada. Arct. Alp. Res. 7: 249259.Google Scholar
Matthews, J.V. Jr., 1977. Tertiary Coleoptera fossils from the North American arctic. Coleopts Bull. 31: 297308.Google Scholar
Matthews, J.V. Jr., 1979. Tertiary and Quaternary environments: Historical background for an analysis of the Canadian insect fauna, pp. 3186in Danks, H.V. (Ed.), Canada and its Insect Fauna. Mem. ent. Soc. Can. 108.Google Scholar
Mayr, E., and O'Hara, R.J.. 1986. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40: 5567.Google Scholar
McLean, A., and Marchand, L.. 1968. Grassland ranges of the southern interior of British Columbia. Can. Dep. Agric. Publ. 1319.Google Scholar
Mehringer, P.J. Jr., 1985. Late-Quaternary pollen records from the interior Pacific Northwest and northern Great Basin of the United States, pp. 167189in Bryant, V.M. Jr.,, and Holloway, R.G. (Eds.), Pollen Records of Late-Quaternary North American Sediments. American Assoc. Stratigraphic Palynologists Foundation, Dallas, TX.Google Scholar
Meidinger, D., and Pojar, J.. 1991. Ecosystems of British Columbia. British Columbia Ministry of Forests, Victoria, B.C.Google Scholar
Meyer, A., Kocher, T.D., Basasibwaki, P., and Wilson, A.C.. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550553.Google Scholar
Mickelson, D.M., Clayton, L., Fullerton, D.S., and Borns, H.W. Jr., 1983. The Late Wisconsin Glacial record of the Laurentide Ice Sheet in the United States, pp. 337in Porter, S.C. (Ed.), Late Quaternary Environments of the United States. Volume 1. The Late Pleistocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Mitchell, N.D. 1991. The derivation of climate surfaces for New Zealand, and their application to the bioclimatic analysis of the distribution of kauri (Agathis australis). Jl R. Soc. N. Z. 21: 1324.Google Scholar
Morgan, A.V., and Morgan, A.. 1980. Faunal assemblages and distributional shifts of Coleoptera during the Late Pleistocene in Canada and the northern United States. Can. Ent. 112: 11051128.Google Scholar
Morgan, A.V., Morgan, A., Ashworth, A.C., and Matthews, J.V. Jr., 1983. Late Wisconsin fossil beetles in North America, pp. 354362in Porter, S.C. (Ed.), Late Quaternary Environments of the United States. Volume 1. The Late Pleistocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Moritz, C., Dowling, T.E., and Brown, W.M.. 1987. Evolution of animal mt DNA: Relevance for population biology and systematics. A. Rev. Ecol. Syst. 18: 269292.Google Scholar
Morlan, R.E., and Matthews, J.V. Jr., 1983. Taphonomy and paleoecology of fossil insect assemblages from Old Crow (CRH-15) Northern Yukon Territory, Canada. Geog. Phys. Quat. 37: 147157.Google Scholar
Moss, E.H. 1955. The vegetation of Alberta. Bot. Rev. 21: 493567.Google Scholar
Mott, R.J., and Jackson, L.E. Jr., 1982. An 18,000 year palynological record from the southern Alberta segment of the Classical Wisconsin “Ice-free Corridor”. Can. J. Earth Sci. 19: 504513.Google Scholar
Munro, J.A., and Cowan, I.McT.. 1947. A Review of the Bird Fauna of British Columbia. Spec. Publ. Br. Columbia Prow Mus. 2: 285 pp.Google Scholar
Nicholson, A.C., Pojar, J., and Hamilton, E.H.. 1982. Introduction, pp. 1–17 in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria, B.C.Google Scholar
Nix, H.A. 1986. A Biogeographic analysis of Australian Elapid Snakes, pp. 4–15 in Longmore, R. (Ed.), Atlas of Elapid Snakes of Australia. Australian Government Publishing Service, Canberra.Google Scholar
Noonan, G.R. 1990. Biogeographical patterns of North American Harpalus Latreille (Insecta: Coleoptera: Carabidae). J. Biogeogr. 17: 583614.Google Scholar
Parsons, D.C., Lavkulich, L.M., and van Ryswyk, A.L.. 1971. Soil properties affecting the vegetative composition of Agropyron communities at Kamloops, British Columbia. Can. J. Soil Sci. 51: 269276.Google Scholar
Patton, J.L., and Smith, M.F.. 1992. mt DNA phylogeny of Andean mice: A text of diversification across ecological gradients. Evolution 46: 174183.Google Scholar
Pojar, J. 1982. Boreal and subalpine grasslands in northern British Columbia, pp. 249261in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria, B.C.Google Scholar
Pojar, J., Klinka, K., and Meidinger, D.V.. 1987. Biogeoclimatic ecosystem classification in British Columbia. Forest Ecol. Mgmt 22: 119154.Google Scholar
Pollock, D.A. 1991. Natural History, Classification, Reconstructed Phylogeny, and Geographic History of Pytho Latreille (Coleoptera: Heteromera: Pythidae). Mem. ent. Soc. Can. 154: 104 pp.Google Scholar
Powell, J.R., Caccone, A., Amato, G. D., and Yoon, C.. 1986. Rates of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc. natn. Acad. Sci. U.S.A. 83: 90909093.Google Scholar
Powers, T.O., Jensen, S.G., Kindler, S.D., Stryker, C.J., and Sandall, L.J.. 1989. Mitochondrial DNA divergence among greenbug (Homoptera: Aphididae) biotypes. Ann. ent. Soc. Am. 82: 298302.Google Scholar
Prest, V.K. 1970. Quaternary Geology of Canada, pp. 676764in Douglas, R.J.W. (Ed.), Geology and Economic Minerals of Canada. Geol. Surv. Can. econ. Geol. Rep. 1.Google Scholar
Raup, H.M. 1941. Botanical problems in Boreal America. Bot. Rev. 7: 147248.Google Scholar
Reeb, C.A., and Avise, J.C. 1990. A genetic discontinuity in a continuously distributed species; mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124: 397406.Google Scholar
Reeves, B.O.K. 1973. The nature and age of the contact between the Laurentide and Cordilleran ice sheets in the western interior of North America. Arc. Alp. Res. 5: 116.Google Scholar
Repenning, C.A. 1967. Palearctic–Nearctic mammalian dispersal in the late Cenozoic. pp. 288311in Hopkins, D.M. (Ed.), The Bering Land Bridge. Stanford University Press, Stanford, CA.Google Scholar
Repenning, C.A. 1980. Faunal exchanges between Siberia and North America. Can. J. Anthropol. 1: 3744.Google Scholar
Repenning, C.A. 1990. Of mice and ice in the late Pliocene of North America. Arctic 43: 314323.Google Scholar
Riddle, B.R., and Honeycutt, R.L.. 1990. Historical biogeography in North American arid regions: An approach using mitochondrial DNA phylogeny in grasshopper mice (genus Onychomys). Evolution 44: 115.Google Scholar
Riley, D., and Young, A.. 1968. World Vegetation. Cambridge University Press, Cambridge, England.Google Scholar
Ritchie, J.C. 1976. The late-Quaternary vegetational history of the western interior of Canada. Can. J. Bot. 54: 17931818.Google Scholar
Ritchie, J.C. 1984. Past and Present Vegetation of the Far Northwest of Canada. University of Toronto Press, Toronto, Ont.Google Scholar
Ritchie, J.C. 1987. Postglacial Vegetation of Canada. Cambridge University Press, Cambridge, England.Google Scholar
Ritchie, J.C. 1989. History of the boreal forest in Canada, pp. 508512in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 7. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Ritchie, J.C., Cwynar, L.W., and Spear, R.W.. 1983. Evidence from north-west Canada for an early Holocene Milankovitch thermal maximum. Nature 305: 126128.Google Scholar
Ritchie, J.C., and MacDonald, G.M.. 1986. The patterns of post-glacial spread of white spruce. J. Biogeogr. 13: 527540.Google Scholar
Robinson, J.J. 1985. A comparative study of two seed bugs, Geocoris bullatus (Say) and G. discopterus Stål (Hemiptera: Lygaeidae) in the Yukon. M.Sc. thesis, University of British Columbia, Vancouver, B.C.Google Scholar
Rosen, D.E. 1978. Vicariant patterns and historical explanation in biogeography. Syst. Zool. 27: 159188.Google Scholar
Ross, H.H. 1965. Pleistocene events and insects, pp. 583596in Wright, H.E. Jr.,, and Frey, D.G. (Eds.), The Quaternary of the United States. Princeton University Press, Princeton, NJ.Google Scholar
Ross, H.H. 1970. The ecological history of the Great Plains: Evidence from grassland insects, pp. 225240in Dort, W. Jr.,, and Jones, J.K. Jr., (Eds.), Pleistocene and Recent Environments of the Central Great Plains. University Press of Kansas, Lawrence, KS.Google Scholar
Ruddiman, W.F., and Kutzbach, J.E.. 1991. Plateau uplift and climate change. Sci. Am. 264(3): 6675.Google Scholar
Rutter, N.W. 1980. Late Pleistocene history of the western Canadian ice-free corridor. Can. J. Anthropol. 1: 118.Google Scholar
Ryder, J.M. 1982. Surficial geology of the grassland areas of British Columbia and adjacent regions, pp. 6387in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria B.C.Google Scholar
Schafer, J.R., and Hartshorn, J.H.. 1965. The Quaternary of New England, pp. 113128in Wright, H.E. Jr.,, and Frey, D.G. (Eds.), The Quaternary of the United States. Princeton University Press, Princeton, NJ.Google Scholar
Schmidt, K.P. 1938. Herpetological evidence for the postglacial eastward extension of the steppe in North America. Ecology 19: 396407.Google Scholar
Schweger, C.E. 1982. Late Pleistocene vegetation of Eastern Beringia: Pollen analysis of dated alluvium, pp. 95112in Hopkins, D.M., Matthews, J.V. Jr.,, Schweger, C.E., and Young, S.B. (Eds.), Paleoecology of Beringia. Academic Press, Inc., New York, NY.Google Scholar
Schweger, C.E. 1989. Paleoecology of the western Canadian ice-free corridor, pp. 491498in Fulton, R.J. (Ed.), Quaternary Geology of Canada and Greenland. Chapter 7. Geological Survey of Canada, Ottawa, Ont.Google Scholar
Schweger, C.E., and Hickman, M.. 1989. Holocene paleohydrology of central Alberta: Testing the general-circulation-model climate simulation. Can. J. Earth Sci. 26: 18261833.Google Scholar
Schwert, D.P., and Ashworth, A.C.. 1988. Late Quaternary history of the northern beetle fauna of North America: A synthesis of fossil and distributional evidence. Mem. ent. Soc. Can. 144: 93107.Google Scholar
Scudder, G.G.E. 1961. Some Heteroptera new to British Columbia. Proc. ent. Soc. Br. Columbia 58: 2629.Google Scholar
Scudder, G.G.E. 1979. Present patterns in the fauna and flora of Canada, pp. 87–179 in Danks, H.V. (Ed.), Canada and its Insect Fauna. Mem. ent. Soc. Can. 108.Google Scholar
Scudder, G.G.E. 1981. Two new species of Lygaeinae (Hemiptera: Lygaeidae) from Canada. Can. Ent. 113: 747753.Google Scholar
Scudder, G.G.E. 1985. Heteroptera new to Canada. J. ent. Soc. Br. Columbia 82: 6671.Google Scholar
Scudder, G.G.E. 1986. Additional Heteroptera new to British Columbia. J. ent. Soc. B.C. 83: 6365.Google Scholar
Shelford, V.E. 1963. The Ecology of North America. University of Illinois Press, Urbana, IL.Google Scholar
Slater, J.A. 1964. A Catalogue of the Lygaeidae of the World. 2 vols. University of Connecticut, Storrs, CT.Google Scholar
Solignac, M., Monnerot, M., and Mounolou, J.-C.. 1986. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J. Molec. Evol. 23: 3140.Google Scholar
Spaulding, W.G. 1990. Vegetational and climatic development of the Mohave Desert: The last glacial maximum to the present, pp. 166199in Betancourt, J.L., Van Devender, T.R., and Martin, P.S. (Eds.), Packrat Middens. The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson, AZ.Google Scholar
Spear, R.W. 1989. Late-Quaternary history of high-elevation vegetation in the White Mountains of New Hampshire. Ecol. Monogr. 59: 125151.Google Scholar
Stanek, W. 1980. Vegetational types and environmental factors associated with Foothills gas pipeline route. Report BC-x-205. Can. Dept. Environ. Can. For. Serv., Pacific For. Res. Centre, Victoria, B.C.Google Scholar
Sweet, M.H. 1964 a. The biology and ecology of the Rhyparochrominae of New England (Heteroptera: Lygaeidae). Part I. Entomologica Am. (n.s.) 43: 1124.Google Scholar
Sweet, M.H. 1964 b. The biology and ecology of the Rhyparochrominae of New England (Heteroptera: Lygaeidae). Part II. Entomologica Am. (n.s.) 44: 1201.Google Scholar
Thompson, R.S. 1990. Late Quaternary vegetation and climate in the Great Basin, pp. 200239in Betancourt, J.L., Van Devender, T.R., and Martin, P.S. (Eds.), Packrat Middens. The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson, AZ.Google Scholar
Tisdale, E.W. 1947. The grasslands of the southern interior of British Columbia. Ecology 28: 346382.Google Scholar
Tisdale, E.W. 1982. Grasslands of Western North America: The Pacific Northwest Bunchgrass. pp. 223245in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings. B.C. Ministry of Forests, Victoria B.C.Google Scholar
Transeau, E.N. 1935. The Prairie Peninsula. Ecology 16: 423437.Google Scholar
Tsukada, M., and Deevey, E.S. Jr., 1967. Pollen analyses from four lakes in the southern Maya area of Guatemala and El Salvador, pp. 303–331 in Cushing, E.J., and Wright, H.E. Jr., (Eds.), Quaternary Paleoecology. Yale University Press, New Haven & London.Google Scholar
Van Devender, T.R. 1990 a. Late Quaternary vegetation and climate of the Chihuahuan Desert, United States and Mexico, pp. 105133in Betancourt, J.L., Van Devender, T.R., and Martin, P.S. (Eds.), Packrat Middens. The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson, AZ.Google Scholar
Van Devender, T.R. 1990 b. Late Quaternary vegetation and climate change of the Sonoran Desert, United States and Mexico. pp. 234265in Betancourt, J.L., Van Devender, T.R., and Martin, P.S. (Eds.), Packrat Middens. The Last 40,000 Years of Biotic Change. University of Arizona Press, Tucson, AZ.Google Scholar
Waitt, R.B., and Thorson, R.M.. 1983. The Cordilleran ice sheet in Washington, Idaho and Montana, pp. 5370in Porter, S.C. (Ed.), Late Quaternary Environments of the United States. Volume 1. The Late Pleistocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Wallis, C.A. 1982. An overview of the mixed grassland of North America. pp. 195208in Nicholson, A.C., McLean, A., and Baker, T.E. (Eds.), Grassland Ecology and Classification. Symposium Proceedings, B.C. Ministry of Forests, Victoria B.C.Google Scholar
Watts, W.A. 1983. Vegetational history of the eastern United States 25,000 to 10,000 years ago. pp. 294310in Porter, S.C. (Ed.), Late-Quaternary Environments of the United States. Volume 1. The Late Pleistocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Watts, W.A., and Bright, R.C.. 1968. Pollen, seed and mollusk analysis of a sediment core from Pickeral Lake, north eastern South Dakota. Bull. geol. Soc. Am. 79: 855876.Google Scholar
Wayne, R.K., Meyer, A., Lehman, N., Van Valkenburgh, B., Kat, P.W., Fuller, T.K., Girman, D., and O'Brien, S.J.. 1990. Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals. Proc. natn. Acad. Sci. U.S.A. 87: 17721776.Google Scholar
Weaver, J.E. 1954. North American Prairie. Johnsen Publ. Co., Lincoln. NE.Google Scholar
Weaver, J.E., and Albertson, F.W.. 1956. Grasslands of the Great Plains. Johnsen Publ. Co., Lincoln, NE.Google Scholar
Webb, T. III. 1988. Eastern North America, pp. 385414in Huntley, B., and Webb, T. III (Eds.), Vegetation History. Kluwer Academic Publishers, Dordrecht, the Netherlands.Google Scholar
Webb, T. III, Cushing, E.J., and Wright, H.E. Jr., 1983. Holocene changes in the vegetation of the midwest. pp. 142165in Wright, H.E. Jr., (Ed.), Late-Quaternary Environments of the United States. Vol. 2. The Holocene. University of Minnesota Press, Minneapolis, MN.Google Scholar
Wells, P.V. 1970 a. Vegetational history of the Great Plains: A post-glacial record of coniferous woodland in southeastern Wyoming, pp. 185202in Dort, W.J. Jr.,, and Jones, J.K. Jr., (Eds.), Pleistocene and Recent Environments of the Central Great Plains. University Press of Kansas, Lawrence, KS.Google Scholar
Wells, P.V. 1970 b. Historical factors controlling vegetation patterns and floristic distributions in the Central Plains Region of North America, pp. 211221in Dort, W. Jr.,, and Jones, J.K. Jr., (Eds.), Pleistocene and Recent Environments of the Central Great Plains. University Press of Kansas, Lawrence, KS.Google Scholar
Whitehead, D.R. 1965. Palynology and Pleistocene phytogeography of unglaciated eastern North America. pp. 417432in Wright, H.E. Jr.,, and Frey, D.G. (Eds.), The Quaternary of the United States. Princeton University Press, Princeton, NJ.Google Scholar
Whitehead, H.F. 1973. Late-Wisconsin vegetational changes in unglaciated eastern North America. Quat. Res. 3: 621631.Google Scholar
Whitfield, C.J., and Beutner, E.L.. 1938. Natural vegetation in the Desert Plains grassland. Ecology 19: 2637.Google Scholar
Wilkinson, K. 1981. Remnant and early settlement prairies and Solonetzic soils in the Peace River District. M.Sc. thesis, University of Calgary, Calgary, Alta.Google Scholar
Williams, N.E., Westgate, J. A., Williams, D.D., Morgan, A., and Morgan, A. V.. 1981. Invertebrate fossils (Insecta: Trichoptera, Diptera, Coleoptera) from the Pleistocene Scarborough Formation at Toronto, Ontario and their paleoenvironmental significance. Quat. Res. 16: 146166.Google Scholar
Wolfe, J.A. 1969. Neogene floristic and vegetation history of the Pacific Northwest. Madrona 20: 83110.Google Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary Floras. pp. 201233in Graham, A. (Ed.), Floristics and Paleofloristics of Asia and Eastern North America. Elsevier, Amsterdam, the Netherlands.Google Scholar
Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during Late Cretaceous and Tertiary. Ann. Mo. bot. Gdn. 62: 264279.Google Scholar
Wolfe, J.A. 1977. Paleogene Floras from the Gulf of Alaska region. Prof. Pap. U.S. geol. Surv. 997.Google Scholar
Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am. Sci. 66: 694703.Google Scholar
Wolfe, J.A. 1985. Distribution of major vegetational types during the Tertiary, pp. 357375in Sundquist, E.T., and Broecker, W.S. (Eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington, DC.Google Scholar
Wolfe, J.A., and Hopkins, D.M.. 1967. Climate changes recorded by Tertiary land floras in northern North America. Proc. 11th Pacif. Sci. Congr., Tokyo: 6776.Google Scholar
Wright, H.E. Jr., 1968. History of the Prairie Peninsula, pp. 78–88 in Bergstrom, R.E. (Ed.), The Quaternary of Illinois. Coll. Agric., Univ. Illinois, Urbana, Spec. Rep. 14.Google Scholar
Wright, H.E. Jr., 1970. Vegetational history of the Central Plains, pp. 157172in Dort, W. Jr.,, and Jones, J.K. Jr., (Eds.), Pleistocene and Recent Environments of the Central Great Plains. University Press of Kansas, Lawrence, KS.Google Scholar
Wright, H.E. Jr., 1977. Quaternary vegetation history — some comparisons between Europe and America. A. Rev. Earth Planet. Sci. 5: 123158.Google Scholar
Wright, H.E. Jr., (Ed.) 1983. Late Quaternary Environments of the United States. University of Minnesota Press, Minneapolis, MN.Google Scholar
Yurtsev, B.A. 1982. Relics of the xerophytic vegetation of Beringia in northeastern Asia. pp. 157177in Hopkins, D.M., Matthews, J.V. Jr.,, Schweger, C.E., and Young, S.B. (Eds.), Paleoecology of Beringia. Academic Press, Inc., New York, NY.Google Scholar