Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T13:47:54.917Z Has data issue: false hasContentIssue false

THE ENTOMOPHAGA GRYLLI (FRESENIUS) BATKO SPECIES COMPLEX: ITS BIOLOGY, ECOLOGY, AND USE FOR BIOLOGICAL CONTROL OF PEST GRASSHOPPERS1

Published online by Cambridge University Press:  31 May 2012

Raymond I. Carruthers
Affiliation:
USDA-Agricultural Research Service, Biological Control of Pests Research Unit, 2413 East Hwy 83, Weslaco, Texas, USA 78596
Mark E. Ramos
Affiliation:
USDA-Agricultural Research Service, Plant Protection Research Unit, Ithaca, New York, USA 14853
Timothy S. Larkin
Affiliation:
USDA-Agricultural Research Service, Plant Protection Research Unit, Ithaca, New York, USA 14853
Donald L. Hostetter
Affiliation:
USDA-Agricultural Research Service, Soil and Water Management Research Unit, Kimberly, Idaho, USA 83341
Richard S. Soper
Affiliation:
USDA-Agricultural Research Service, International Research Programs, Beltsville, Maryland, USA 20705
Get access

Abstract

The biology, ecology, disease etiology, and biological control potential of different members of the Entomophaga grylli species complex are discussed. This complex is represented by several pathotypes that include members that produce both conidia and resting spores within a single season, and members that produce only resting spores. This complex is known as a major pathogen of acridids from most areas of the world where populations of these insects are found, including Africa, Asia, Australia, Europe, North America, and South America. Pathogens from this species complex commonly cause disease epizootics in their host populations and are known to reduce significantly outbreaks of grasshoppers, particularly following periods of rain or high humidity. Specific factors that either limit or enhance disease processes and host mortality are discussed in relation to both epizootiology and biological control programmes. Recent biological control efforts are discussed and the potential of using members of the E. grylli species complex in both augmentation and introduction programmes is considered.

Résumé

On trouvera ici les résultats d'une étude sur la biologie, l'écologie, les effets pathogènes et l'efficacité comme agents de lutte biologique des différents membres du complexe d'espèces Entomophaga grylli. Le complexe est représenté par plusieurs pathotypes dont certains produisent des conidies et des spores en repos au cours de la même saison et d'autres, seulement des spores en repos. Le complexe est reconnu comme l'un des principaux pathogènes des criquets dans la plupart des zones du globe où vivent des populations de ces insectes, Afrique, Asie, Australie, Europe, Amérique du Nord et Amérique du Sud. Les pathogènes du complexe causent ordinairement des épizooties chez les populations hôtes et enrayent significativement les invasions de criquets, particulièrement après des périodes de pluie ou d'humidité élevée. Les facteurs spécifiques qui limitent ou favorisent l'évolution de la maladie et la mortalité des hôtes sont examinés par rapport à l'épizootiologie et aux programmes de lutte biologique. Les tentatives récentes de lutte biologique sont examinées et le potentiel des espèces du complexe E. grylli comme agents de lutte biologique au cours de programmes de prolifération et d'introduction est examiné. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: USDA-ARS NPS, Building 005, Room 220, Beltsville Agriculture Reserch Centre - West, Beltsville, Maryland, 20705 USA.

References

Anonymous. 1934. Report of the Proceedings of the Inter-State Locust Conference, Pretoria. Union South Africa Department of Agriculture and Forestry, Pretoria. 116 pp.Google Scholar
Batko, A. 1964. On the new genera: Zoophthora gen. nov., Triplosporium (Thaxter) gen. nov. and Entomophaga gen. nov. (Phycomycetes: Entomophthoraceae). Bulletin de I'Academie Polonaise des Science, Serie Sciences Biologiques 12: 403406.Google Scholar
Benz, G. 1987. Environment, pp. 177–214 in Fuxa, J.R., and Tanada, Y. (Eds.), Epizootiology of Insect Diseases. Wiley Interscience, New York, NY. 555 pp.Google Scholar
Black, D. 18961897. Observations on the growth of a fungus parasitic on locusts. Transactions of the South African Philosophical Society 9: 2.Google Scholar
Carruthers, R.I., Feng, Z., Ramos, M. and Soper, R.S.. 1988. The effect of solar radiation on the survival of Entomophaga grylli conidia. Journal of Invertebrate Pathology 52: 154162.Google Scholar
Carruthers, R.I., Humber, R.A. and Ramos, M.E.. 1989. Biological Control of Rangeland Grasshoppers using a Fungal Pathogen from Australia: A Proposed Field Release of an Exotic Fungal Pathogen. USDA-APHIS Report. 23 pp.Google Scholar
Carruthers, R.I. and Hural, K.. 1990. Fungi as naturally occurring entomopathogens. pp. 115–138 in Baker, R., and Dunn, P. (Eds.), New Directions in Biological Control. UCLA Symposia on Molecular and Cellular Biology 112: 837 pp.Google Scholar
Carruthers, R.I., Larkin, T.S., Firstencel, H. and Feng, Z.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.Google Scholar
Carruthers, R.I., Larkin, T.S. and Soper, R.S.. 1988. Simulation of insect disease dynamics: An application of SERB to a rangeland ecosystem. Simulation 51: 101109.Google Scholar
Carruthers, R.I. and Onsager, J.A.. 1993. Perspective on the use of exotic natural enemies for biological control of pest grasshoppers. Environmental Entomology 22: 885903.Google Scholar
Carruthers, R.I., Sawyer, A.J. and Hural, K.. 1991. Use of fungal pathogens as biological control agents of insect pests, pp. 336–372 in Rice, B.J. (Ed.), Symposia Proceedings of the National Academy of Sciences. National Academy of Sciences Press, Washington, DC. 437 pp.Google Scholar
Carruthers, R.I. and Soper, R.S.. 1987. Fungal diseases, pp. 357–416 in Fuxa, J.R., and Tanada, Y. (Eds.), Epizootiology of Insect Diseases. Wiley Interscience, New York, NY. 555 pp.Google Scholar
Chapman, R.G. and Page, W.W.. 1979. Factors affecting the mortality of the grasshopper Zonocerus variegatus in southern Nigeria. Journal of Animal Ecology 48: 271288.Google Scholar
Chapman, R.F., Page, W.W. and Cook, A.G.. 1979. A study of population changes in the grasshopper Zonocerus variegatus in southern Nigeria. Journal of Animal Ecology 48: 247270.Google Scholar
Chappell, M.A. and Whitman, D.W.. 1990. Grasshopper thermoregulation. pp. 143–172 in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY. 563 pp.Google Scholar
Chatigny, M.A., Dimmick, R.L. and Harrington, J.B.. 1979. Principles of deposition of microbiological particles. pp. 111–150 in Edmonds, R.L. (Ed.), Aerobiology—The Ecological Systems Approach. Dowden, Hutchinson and Ross, Stroudsburg, PA. 386 pp.Google Scholar
Cunningham, G.L. 1992. APHIS; grasshopper integrated pest management in the United States—a cooperative project with emphasis on biological control, pp. 21–25 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Edington, D. 1898. Annual Report of the Cape of Good Hope Bacteriological Institute, Grahamstown.Google Scholar
Erlandson, M.A., Johnson, D.L. and Olfert, O.O.. 1988. Entomophaga grylli infections in grasshopper populations in Saskatchewan and Alberta, 1985–1986. The Canadian Entomologist 120: 205209.Google Scholar
Faure, J.C. 1935. The life history of the red locust Nomadacris septemfasciata (Serville). Union South Africa Department of Agriculture and Forestry Bulletin 144: 132.Google Scholar
Firstencel, H., Butt, T.M. and Carruthers, R.I.. 1990. A fluorescence microscopy method for determining the viability of Entomophthoralean fungal spores. Journal of Invertebrate Pathology 55: 258264.Google Scholar
Fresa, R. 1971. El hongo Entomophaga grylli en tucuras. INTA, Revista Investigaciones Agropcuarias 5: 8388.Google Scholar
Fresenius, G. 1856. Notiz, Insekten-Pilze betreffend. Botanische Zeitung 14: 882883.Google Scholar
Fresenius, G. 1858. Ueber die Pilzgattung Entomophthora. Abhandlungender Senckenbergischen Naturforschenden Gesellschaft 2: 201210.Google Scholar
Funk, C.J., Ramoska, W.A. and Bechtel, D.B.. 1990. Light and electron microscopic studies of protoplast development during Entomophaga grylli pathotype 2 infections in Melanoplus differentialis. Journal of Invertebrate Pathology 55: 207214.Google Scholar
Funk, C.J., Ramoska, W.A. and Bechtel, D.B.. 1993. Histopathology of Entomophaga grylli pathotype 2 infections in Melanoplus differentialis. Journal of Invertebrate Pathology 61: 196202.Google Scholar
Goettel, M.S. 1992. Fungal agents for biocontrol. pp. 122–132 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Greathead, D.J. 1992. Natural enemies of tropical locusts and grasshoppers: Their impact and potential as biological control agents, pp. 105–121 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Henry, J.E. and Onsager, J.A.. 1982. Large-scale test of control of grasshoppers on rangeland with Nosema locustae. Journal of Economic Entomology 75: 3135.Google Scholar
Hopkins, J.C.F. 1934. Locust diseases, pp. 9293in Proceedings of the Third International Locust Conference, London. H.M. Stationary Office, London.Google Scholar
Howard, L.O. 1902. Experimental work with fungous diseases of grasshoppers. United States Department of Agriculture Yearbook 1901: 459470.Google Scholar
Humber, R.A. 1981. An alternative view of certain taxonomic criteria used in the Entomophthorales. Mycotaxon 13: 191240.Google Scholar
Humber, R.A. 1984. The identity of Entomophaga species attacking Lepidoptera. Mycotaxon 21: 265272.Google Scholar
Humber, R.A. 1989. Synopsis of a revised classification for the Entomophthorales. Mycotaxon 34: 441460.Google Scholar
Humber, R.A. and Ramoska, W.A.. 1986. Variations in Entomophthoralean life cycles: Practical implications, pp. 190–193 in Samson, R.A., Vlak, J.M., and Peters, D. (Eds.), Fundamental and Applied Aspects of Invertebrate Pathology. Foundation for the 4th International Colloquium of Invertebrate Pathology, Wageningen. 711 pp.Google Scholar
Joern, A. and Gaines, S.B.. 1990. Population dynamics and regulation in grasshoppers, pp. 415–482 in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY. 563 pp.Google Scholar
Kemp, W.P. 1986. Thermoregulation in three rangeland grasshopper species. The Canadian Entomologist 118: 335343.Google Scholar
Kemp, W.P. 1992. Rangeland grasshopper community structure: A working hypothesis. Environmental Entomology 21: 461470.Google Scholar
Krueger, S.R. and Ramoska, W.A.. 1985. Purification and infectivity of Entomophaga grylli pathotype 2 against Melanoplus differentialis. Entomophaga 30: 293302.Google Scholar
Lockwood, J.A. 1993 a. Environmental issues involved in biological control of rangeland grasshoppers with exotic agents. Environmental Entomology 22: 503518.Google Scholar
Lockwood, J.A. 1993 b. Benefits and costs of controlling rangeland grasshoppers with exotic organisms: Search for a null hypothesis and regulatory compromise. Environmental Entomology 22: 904914.Google Scholar
Lomer, C.J. and Prior, C.. 1992. Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
MacLeod, D.M. 1956. Notes on the genus Empusa Cohn. Canadian Journal of Botany 34: 1626.Google Scholar
MacLeod, D.M. 1963. Entomophthorales infections, pp. 189–232 in Steinhaus, E.A. (Ed.), Insect Pathology: An Advanced Treatise, Vol. 2. Academic Press, New York, NY. 689 pp.Google Scholar
MacLeod, D.M., Cameron, J.W. MacBain and Soper, R.S.. 1966. The influence of environmental conditions on epizootics caused by entomogenous fungi. Revue Roumaine de Biologic 11: 125131.Google Scholar
MacLeod, D.M. and Müller-Kögler, E.. 1973. Entomogenous fungi: Entomophthora species with pear-shaped to almost spherical conidia. Mycologia 65: 823893.Google Scholar
MacLeod, D.M., Tyrrell, D. and Welton, M.A.. 1980. Isolation and growth of the grasshopper pathogen, Entomophthora grylli. Journal of Invertebrate Pathology 36: 8589.Google Scholar
McAlpine, D. 1899. Brief report on locust-fungus imported from Cape. Agricultural Gazette of New South Wales 10: 1213.Google Scholar
McAlpine, D. 1900. The systematic position of the locust-fungus imported from Cape. Agricultural Gazette of New South Wales 11: 184186.Google Scholar
McDaniel, B. 1986. Fungus infection of two species of grasshoppers in western South Dakota. Southwestern Naturalist 31: 269270.Google Scholar
McDaniel, B. and Bohl, R.A.. 1984. The distribution and host range of Entomophaga grylli, a fungal parasite of grasshoppers in South Dakota. Proceedings of the Entomological Society of Washington 86: 864868.Google Scholar
Milner, R.J. 1978. On the occurrence of Entomophthora grylli, a fungal pathogen of grasshoppers in Australia. Journal Australian Entomological Society 17: 293296.Google Scholar
Milner, R.J. 1982. On the occurrence of pea aphids, Acyrthosiphon pisum, resistant to isolates of the fungal pathogen, Erynia neoaphidis. Entomologia Experimentalis et Applicata 32: 2327.Google Scholar
Milner, R.J. 1985. Field tests of a strain of Entomophaga grylli from the USA for biocontrol of the Australian wingless grasshopper, Phaulacridium vittatum. pp. 255261in Chapman, R.F. (Ed.), Proceedings of the 4th Australasian Conference on Grassland Invertebrate Ecology, Lincoln College, Canterbury, 13–17 May, 1985. Caxton Press.Google Scholar
Milner, R.J. and Soper, R.S.. 1983. The potential of Entomophaga grylli for biological control of wingless grasshopper p. 18in Proceedings of the Australian Entomological Society 14th Annual Meeting and Conference, Armidale.Google Scholar
Montermini, A. and Deseö, K.V.. 1990. Esperienze di lotta chimica e biologica contro Calliptamus italicus e monitoraggio sulla presenza di entomopatogeni nelle popolazioni in Emilia. ATTI Giornate Fitopatologiche 1: 363372.Google Scholar
Nelson, D.R., Valovage, W.D. and Frye, R.D.. 1984. Infection of grasshoppers with Entomophaga grylli by injection of germinating resting spores. Journal of Invertebrate Pathology 39: 416418.Google Scholar
Packham, S.O., Kish, L.P. and Brasven, M.A.. 1993. Relationship between spring-fed swales and adjacent xeric grasslands on the incidence of Entomophaga calopteni among grasshoppers on southwest Idaho rangeland. Environmental Entomology 22: 11561160.Google Scholar
Paperiok, B. and Wilding, N.. 1979. Mise en evidence d'une différence de sensibilité entre 2 clones du Puceron du pois, Acyrthosiphon pisum, exposés à 2 souches du champignon Phycomycete: Entomophthora obscura. Comptes-rendus de l'académie des sciences Paris, Série D 288: 93.Google Scholar
Paraiso, A., Lomer, C.J., Godonou, I. and Kpindu, D.. 1992. Preliminary studies on the ecology of Zonocerus variegatus in the Republic of Benin, pp. 133–141 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Pickford, R. and Riegert, P.W.. 1964. The fungus disease caused by Entomophthora grylli Fres., and its effects on grasshopper populations in Saskatchewan in 1963. The Canadian Entomologist 96: 11581166.Google Scholar
Poprawski, T.J. 1989. Survey of Diuraphis noxia, Grasshoppers and Natural Enemies in the Soviet Central Asian Republic of Kirgizia, 15 August–16 September 1989. United States Department of Agriculture, Agricultural Research Service, European Parasite Laboratory Report. 29 pp.Google Scholar
Ramos, M.E. 1993. The Isolation, Implementation and Evaluation of Entomophaga praxibuli as a Potential Biological Control Agent of North American Grasshoppers. M.P.S. thesis, Department of Plant Pathology, Cornell University, Ithaca, NY. 47 pp.Google Scholar
Ramoska, W.A., Hajek, A.E., Ramos, M.E. and Soper, R.S.. 1988. Infection of grasshoppers by members of the Entomophaga grylli species complex. Journal of Invertebrate Pathology 52: 309313.Google Scholar
Remaudiére, G. and Keller, S.. 1980. Révision systématique des genres d'Entomophthoraceae à potentialité entomopathogéne. Mycotaxon 11: 323338.Google Scholar
Riegert, P.W. 1968. A History of Grasshopper Abundance Surveys and Forecasts of Outbreaks in Saskatchewan. Memoirs of the Entomological Society Canada 52: 99 pp.Google Scholar
Roffey, J. 1968. The occurrence of the fungus Entomophthora grylli Fresenius on locusts and grasshoppers in Thailand. Journal of Invertebrate Pathology 11: 237241.Google Scholar
Sawyer, A.J., Ramos, M.E., Poprawski, T.J., Soper, R.S. and Carruthers, R.l.. 1997. Seasonal patterns of cadaver persistence and sporulation by the fungal pathogen Entomophaga grylli (Fresenius) Batko (Entomophthorales: Entomophthoraceae) infecting Camnula pellucida (Scudder) (Orfhoptera: Acrididae). pp. 355–374 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society Canada 171: 400 pp.Google Scholar
Skaife, S.H. 1925. The locust fungus, Empusa grylli, and its effects on its host. South African Journal of Science 22: 298308.Google Scholar
Soper, R.S., Humber, R.A. and Stewart, F.. 1982. Evaluation of Entomophaga grylli for Locust Control. US-AID Final Report DAN-1406-G-SS-1076-00, Washington, DC.Google Scholar
Soper, R.S., May, B. and Martinell, B.J.. 1983. Entomophaga grylli enzyme polymorphism as a technique for pathotype identification. Environmental Entomology 12: 270273.Google Scholar
Streett, D.A. 1986. Future prospects for microbial control of grasshoppers, pp. 162–182 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland: A Shortgrass Prairie Perspective. Westview Press, Boulder, CO. 426 pp.Google Scholar
Streett, D.A. and McGuire, M.R.. 1990. Pathogenic diseases of grasshoppers, pp. 483–516 in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. Wiley Interscience, New York, NY. 563 pp.Google Scholar
Thaxter, R. 1888. The Entomophthoraceae of the United States. Memoirs of the Boston Society of Natural History 4: 133201.Google Scholar
USDA-APHIS. 19891993. Cooperative Grasshopper Integrated Pest Management Annual Reports. USDA-APHIS, Boise, ID. 266, 282, 246 pp.Google Scholar
Valovage, W.D. 1989. Development of a delivery system for the fungal pathogen, Entomophaga grylli, for grasshopper suppression, pp. 234–240 in USDA-APHIS, Cooperative Grasshopper Integrated Pest Management Annual Reports. USDA-APHIS, Boise, ID. 226 pp.Google Scholar
Valovage, W.D. and Nelson, D.R.. 1990. Host range and recorded distribution of Entomophaga grylli, a fungal pathogen of grasshoppers, in North Dakota. Journal of the Kansas Entomological Society 63: 454458.Google Scholar
Valovage, W.D., Nelson, D.R. and Frye, R.D.. 1984. Infection of grasshoppers with Entomophaga grylli by exposure to resting spores and germ conidia. Journal of Invertebrate Pathology 43: 274275.Google Scholar
Walton, R.R. and Fenton, F.A.. 1939. Notes on Empusa grylli in Oklahoma. Journal of Economic Entomology 32: 155156.Google Scholar
Zadoks, J.C. and Schein, R.D.. 1979. Epidemiology and Plant Disease Management. Oxford University Press, New York, NY. 427 pp.Google Scholar