Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T19:09:55.620Z Has data issue: false hasContentIssue false

DEVELOPMENT OF BEAUVERIA BASSIANA FOR CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

Stefan T. Jaronski
Affiliation:
Mycotech Corporation, Butte, Montana, USA 59702
Mark S. Goettel
Affiliation:
Agriculture and Agri-Food Canada Research Centre, Lethbridge, Alberta, Canda T1J 4B1
Get access

Abstract

Recognition of the potential of Beauveria bassiana (Balsamo) Vuillemin as a control agent of grasshoppers and locusts occurred as early as 1936, in South Africa. Field testing of B. bassiana as an inundative control agent of grasshoppers and locusts has been facilitated by development of a solid substrate method for mass-production of the fungus and has resulted in the registration of a strain against grasshoppers in the United States. In some, but not all field trials, application has resulted in substantial reductions in grasshopper populations. Numerous environmental constraints, including temperature and ultraviolet (UV) radiation, may limit field efficacy of the fungus. Laboratory studies suggest that low humidity does not limit the ability of the fungus to initiate disease. Sunlight is the major cause of mortality of conidia on leaf surfaces. The incorporation of UVB protectants in formulations can increase conidial survival; however, these have not yet been evaluated for their effects on field efficacy of B. bassiana against insects. Thermoregulation by grasshoppers has been implicated in resistance to mycosis. Results of laboratory studies indicate that grasshoppers infected with B. bassiana preferentially seek temperatures between 40 and 42 °C and these temperatures are inhibitory to disease development. In field-cage trials, a higher prevalence and more rapid development of disease were observed in grasshoppers placed in shaded cages than in grasshoppers placed in cages exposed to full sunlight. In laboratory experiments simulating grasshopper thermoregulation during daylight periods, application of both Metarhizium flavoviride Gams and Rozsypal and B. bassiana simultaneously resulted in a final prevalence of disease that was greater than M. flavoviride alone in the hot temperature environment, and equal to B. bassiana alone in the cool temperature environment. Incorporation of sublethal levels of Dimilin with conidia of B. bassiana increased efficacy of the fungus against grasshoppers in laboratory and field trials. Once environmental constraints are better quantified, it may be possible to overcome them through improved formulation, strain selection, genetic or phenotypic manipulation, and inoculum targeting. Ultimately, success of B. bassiana as a microbial control agent will depend on our ability to overcome environmental and other constraints and/or to predict its efficacy under various environmental conditions.

Résumé

Le potentiel de Beauveria bassiana (Balsamo) Vuillemin comme agent de lutte contre les criquets a été reconnu dès 1936 en Afrique du Sud. Les tests sur le pathogène des criquets en nature ont été facilités par la mise au point d'une méthode de production en masse du champignon sur un substrat solide, ce qui a permis l'enregistrement d'une souche efficace contre les criquets aux états-Unis. Dans la plupart des tests en nature, pas dans tous, l'application du pathogène a occasionné de fortes réductions des populations de criquets. De nombreuses contraintes écologiques, notamment la température et les radiations ultra-violettes (UV), peuvent nuire à l'efficacité de l'organisme sur le terrain. Les études en laboratoire semblent indiquer qu'une humidité faible ne diminue pas l'action pathogène du champignon. La lumière solaire semble être la principale cause de mortalité des conidies à la surface des feuilles. L'incorporation de substances protectrices contre les rayons UVB dans les préparations peut améliorer la survie des conidies, mais l'effet de ces substances sur l'efficacité du pathogène en nature n'a pas encore été déterminé. La régulation thermique a été invoquée comme facteur de résistance à la mycose chez les criquets. Les résultats d'expériences en laboratoire indiquent que les criquets infectés par B. bassiana manifestent une préférence pour les températures de 40–42 °C, températures qui ont un effet inhibiteur sur le développement de la maladie. Dans des essais sur le terrain, la maladie s'est avérée plus fréquente et a évolué plus rapidement chez les criquets gardés dans des cages à l'ombre que chez ceux gardés dans des cages mises en plein soleil. Dans des expériences de laboratoire destinées à simuler la régulation thermique des criquets à la lumière du jour, l'exposition aux deux pathogènes Metarhizium flavoviride Gams et Rozsypal et B. bassiana a entraîné des pathologies plus généralisées que l'exposition exclusive à M. flavoviride à haute température et des pathologies de prévalence égale à celle provoquée par l'exposition exclusive à B. bassiana à température fraîche. L'incorporation de doses sublétales de Dimilin aux préparations de conidies de B. bassiana a augmenté l'efficacité du champignon contre les criquets, aussi bien en laboratoire qu'en nature. Lorsque les contraintes écologiques auront été mieux comprises, il sera plus facile de les circonvenir par utilisation de préparations améliorées et de souches plus efficaces, par tentative de manipulations génétiques ou phénotypiques et par un meilleur choix de cibles pour recevoir l'inoculum. En fin du compte, le succès de B. bassiana comme agent de lutte microbienne dépendra de notre aptitude à contourner les contraintes environnementales ou autres et (ou) de notre capacité de prévoir l'efficacité du champignon dans diverses conditions du milieu. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bateman, R.P., Carey, M., Moore, D. and Prior, C.. 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.Google Scholar
Bidochka, M.J., Pfeifer, T.A. and Khatchatourians, G.G.. 1987. Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia 99: 7783.Google Scholar
Bidochka, M.J., St. Leger, R.J. and Roberts, D.W.. 1997. Mechanisms of deuteromycete fungal infections in grasshoppers and locusts: An overview, pp. 213–224 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Billings, F.H. and Glenn, P.A.. 1911. Results of the artificial use of the white fungus disease in Kansas. USDA Entomological Bulletin 107: 158.Google Scholar
Bing, L.A. and Lewis, L.C.. 1992. Temporal relationships between Zea mays, Ostrinia nubilalis (Lepidoptera: Pyralidae) and endophytic Beauveria bassiana. Entomophaga 37: 525536.Google Scholar
Bissett, J. and Widden, P.. 1988. A new species of Beauveria isolated from Scottish moorland soil. Canadian Journal Botany 66: 361362.Google Scholar
Bradley, C.A., Black, W.E., Kearns, R. and Wood, P.. 1992. Role of production technology in mycoinsecticide development, pp. 160173in Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman & Hall, New York, NY.Google Scholar
Carruthers, R.I., Larkin, T.S. and Firstencel, H.. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. and Soper, R.S.. 1997. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers. pp. 329–353 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Chappell, M.A. and Whitman, D.W.. 1990. Grasshopper thermoregulation. pp. 143172 in Chapman, R. (Ed.), Biology of Grasshoppers. Wiley Interscience, New York, NY.Google Scholar
Couteaudiere, Y., Maurer, P., Viaud, M. and Riba, G.. 1994. Genetic stability of fungi, pp. 343–349 in Proceedings, VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, 28 August – 2 September, 1994.Google Scholar
Daoust, R.A. and Pereira, R.M.. 1986. Stability of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on beetle-attracting tubers and Cowpea foliage in Brazil. Environmental Entomology 15: 12371243.Google Scholar
de Hoog, G.S. 1972. The genera Beauveria, lsaria, Tritarichium and Acrodontium gen. nov. Studies in Mycology 1: 141.Google Scholar
Delgado, F.X., Lobo-Lima, M.L., Bradley, C., Britton, J.H., Henry, J.E. and Swearingen, W.. 1997. Laboratory and field evaluations of Beauveria bassiana (Balsamo) Vuillemin against grasshoppers and locusts in Africa. pp. 239–251 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Fargues, J., Goettel, M.S., Smits, N., Ouedraogo, A., Vidal, C., Lacey, L.A., Lomer, C.J. and Rougier, M.. 1996. Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic hyphomycetes. Mycopathologia 135: 171181.Google Scholar
Feng, M.G., Poprawski, T.J. and Khachatourians, G.G.. 1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology 4: 334.Google Scholar
Ferron, P. 1977. Influence of relative humidity on the development of fungal infection caused by Beauveria bassiana (Fungi Imperfecti, Moniliales) in imagines of Acanthoscelides obtectus (Coleoptera: Bruchidae). Entomophaga 22: 393396.Google Scholar
Foster, R.N., Reuter, K.C., Black, L. and Britton, J.. 1996. Evaluation of the fungus Beauveria bassiana with selected insecticide stressors for control of unconfined rangeland grasshoppers, 1995. Arthropod Management Tests 21: 280.Google Scholar
Foster, R.N., Reuter, K.C., Black, L., Britton, J., Bradley, C., Delgado, F., Post, B., James, C. and Radsick, B.. 1994. Field development of the fungus Beauveria bassiana as a bio-insecticide for grasshoppers on rangeland. pp. 201209in USDA/APHIS/PPQ Cooperative Grasshopper Integrated Pest Management Project, 1994 Annual Report.Google Scholar
Foster, R.N., Reuter, K.C., Bradley, C., Britton, J., Black, L., Drake, S., Leisner, L., Tompkins, M., Fuller, B., Hildreth, M., Kahler, E. and Radsick, B.. 1992. Development of the fungus Beauveria bassiana as a bio-insecticide for grasshoppers on rangeland. pp. 207215in USDA/APHIS/PPQ Cooperative Grasshopper Integrated Pest Management Project, 1992 Annual Report.Google Scholar
Foster, R.N., Reuter, K.C., Bradley, C.A. and Wood, P.P.. 1991. Preliminary investigations of the effect of Beauveria bassiana on several species of rangeland grasshoppers, pp. 203210in USDA/APHIS/PPQ Cooperative Grasshopper Integrated Pest Management Project, 1991 Annual Report.Google Scholar
Gardner, W., Sutton, R.M. and Noblet, R.. 1977. Persistence of Beauveria bassiana, Nomuraea rileyi and Nosema necatrix on soybean foliage. Environmental Entomology 6: 616618.Google Scholar
Goettel, M.S. 1992. Fungal agents for biocontrol. pp. 122–132 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Goettel, M.S. and Jaronski, S.T.. 1997. Safety and registration of microbial control agents of grasshoppers and locusts, pp. 83–99 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Goettel, M.S., Johnson, D.L. and Inglis, G.D.. 1995. The role of fungi in the control of grasshoppers. Canadian Journal of Botany 73 (Suppl. 1): S1–S75.Google Scholar
Goettel, M.S., Poprawski, T.J., Vandenberg, J.D., Li, Z. and Roberts, D.W.. 1990. Safety to nontarget invertebrates of fungal biocontrol agents, pp. 209–232 in Laird, M., Lacey, L.A., and Davidson, E.W. (Eds), Safety of Microbial Insecticides. CRC Press, Boca Raton, FL. 259 pp.Google Scholar
Hajek, A. and St. Leger, R.J.. 1993. Interactions between fungal pathogens and insect hosts. Annual Review of Entomology 39: 293322.Google Scholar
Harrison, R.D. and Gardner, W.A.. 1991. Occurrence of the entomogenous fungus Beauveria bassiana in pecan orchard soils in Georgia. Journal of Entomological Science 26: 360366.Google Scholar
Hassan, A.E.M. and Charnley, A.K.. 1989. Ultrastructural study of the penetration by Metarhizium anisopliae through Dimilin-affected cuticle of Manduca sexta. Journal of Invertebrate Pathology 54: 117124.Google Scholar
Hegedus, D.D., Bidochka, M.J. and Khachatourians, G.G.. 1990. Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Applied Microbiology and Biotechnology 33: 641647.Google Scholar
Hegedus, D.D., Bidochka, M.J., Miranpuri, G.S. and Khachatourians, G.G.. 1992. A comparison of the virulence, stability and cell-wall surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology 36: 785789.Google Scholar
Humber, R.A. 1992. Collection of Entomopathogenic Fungal Cultures: Catalog of Strains. USDA Agricultural Research Service ARS–110: 17 pp.Google Scholar
Inglis, G.D., Duke, G.M., Kanagaratnam, P., Johnson, D.L. and Goettel, M.S.. 1997. Persistence of Beauveria bassiana in soil following application of conidia through crop canopies, pp. 253–263 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Inglis, G.D., Feniuk, R.P., Goettel, M.S. and Johnson, D.L.. 1995. Mortality in adult and nymphal grasshoppers exposed to soil-borne Beauveria bassiana. Journal of Invertebrate Pathology 65: 139146.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1993. Persistence of the entomopathogenic fungus, Beauveria bassiana, on the phylloplane of crested wheatgrass and alfalfa. Biological Control 3: 258270.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1995. Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5: 581590.Google Scholar
Inglis, G.D., Johnson, D.L. and Goettel, M.S.. 1995. Effects of simulated rain on the persistence of Beauveria bassiana conidia on leaves of alfalfa and wheat. Biocontrol Science and Technology 5: 365369.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1996 a. An oil-bait bioassay method used to test the efficacy of Beauveria bassiana against grasshoppers. Journal of Invertebrate Pathology 67: 312315.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1996 b. Effect of bait substrate and formulation of grasshopper nymphs Beauveria bassiana. Biocontrol Science and Technology 6: 3550.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1996 c. Effects of high temperatures and thermoregulation on mycosis by Beauveria bassiana in grasshoppers. Biological Control 7: 131139.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1997 a. Field and laboratory evaluation of two conidial batches of Beauveria bassiana (Balsamo) Vuillemin against grasshoppers. The Canadian Entomologist 129: 171186.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1997 b. Field evaluation of Beauveria bassiana against grasshoppers: Influence of temperature and light exposure on mycosis. Environmental Entomology. 26: 400409.Google Scholar
Inglis, G.D., Goettel, M.S. and Johnson, D.L.. 1997 c. Use of pathogen combinations to overcome the constraints of temperature on entomopathogenic Hyphomycetes against grasshoppers. Biological Control 8: 143152.Google Scholar
Jaronski, S.T., Lobo-Lima, M.L., Razafindratiana, E., Britton, J., Guza, H., O'Leary, C., Bradley, C., Henry, J. and Swearingen, W.. 1994. Isolation and evaluation of fungal pathogens of Locusta migratoria from Madagascar. p. 321in Abstracts. VIth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, 28 August – 2 September, 1994.Google Scholar
Jenkins, N.E. and Goettel, M.S.. 1997. Methods for mass-production of microbial control agents of grasshoppers and locusts, pp. 37–48 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. and Goettel, M.S.. 1993. Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.Google Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paauw, H. and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July, 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Johnson, D.L., Pavlik, E. and Bradley, C.. 1988. Activity of Beauveria bassiana sprayed onto wheat against grasshoppers p. 140in Expert Committee on Pesticide Use in Agriculture, Pesticide Research Reports, Agriculture Canada, Ottawa, ON.Google Scholar
Kemp, W. 1986. Thermoregulation in three rangeland grasshopper species. The Canadian Entomologist 118: 335343.Google Scholar
Khachatourians, G.G. 1992. Virulence of five Beauveria strains, Paecilomyces farinosus, and Verticillium lecanii against the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology 59: 212214.Google Scholar
Li, Z.Z. 1988. A list of insect hosts of Beauveria bassiana. pp. 241255in Li, Y.W., Li, Z.Z., Liang, Z.Q., Wu, J.W., Wu, Z.K., and Xu, Q.F. (Eds.), Study and Application of Entomogenous Fungi in China, Vol. 1. Academic Press, Beijing.Google Scholar
Lingg, A.J. and Donaldson, M.D.. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38: 191200.Google Scholar
Lobo-Lima, M.L., Brito, J.M. and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde Islands. pp. 287–295 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK. 394 pp.Google Scholar
Luger, O. 1888. Fungi Which Kill Insects. University of Minnesota Agricultural Experiment Station Technical Bulletin 4: 37 pp.Google Scholar
MacLeod, D.M. 1954. Investigations on the genera Beauveria Vuill. and Tritarichium Limber. Canadian Journal Botany 32: 818890.Google Scholar
Marcandier, S. and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper, Melanoplus sanguinipes to Beauveria bassiana: Influence of relative humidity. The Canadian Entomologist 119: 901907.Google Scholar
Mason, P.G. and Erlandson, M.A.. 1994. The potential of biological control for management of grasshoppers (Orthoptera: Acrididae) in Canada. The Canadian Entomologist 126: 14591491.Google Scholar
McCoy, C.W., Bullock, R.C., Soares, G.G., Tarrant, C.A. and Beavers, G.M.. 1984. Pathogens of the citrus root weevil complex and the potential use of Beauveria bassiana as microbial control agent in Florida. Proceedings of the International Society for Citriculture 1: 462465.Google Scholar
McDowell, J.M., Funderburk, J.E., Boucias, D.G., Gilreath, M.E. and Lynch, R.E.. 1990. Biological activity of Beauveria bassiana against lesser cornstalk borer, Elasmopalpus lignosellus in both soil and leaf substrates. Environmental Entomology 19: 182191.Google Scholar
Montana State University. 1993. Biocontrol of Grasshoppers and Locusts in Mali. Summary of 1992 Research and Training. U.S. Agency for International Development, Washington, DC. CA No. 688-0517-A-00–2255-00.Google Scholar
Moore, D. and Caudwell, R.W.. 1997. Formulation of entomopathogens for the control of grasshoppers and locusts. pp. 49–67 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Moore, K.C. and Erlandson, M.A.. 1988. Isolation of Aspergillus parasiticus and Beauveria bassiana from melanopline grasshoppers and a demonstration of their pathogenicity in Melanoplus sanguinipes. The Canadian Entomologist 120: 989991.Google Scholar
Mycotech Corporation. 1991. Summary of 1991 Development Program: Beauveria bassiana for Grasshopper Control. Butte, MT. 6 pp.Google Scholar
Ouedraogo, R.M. 1993. Investigations on the Use of the Fungus, Beauveria bassiana (Hyphomycetes: Moniliales) for Control of the Senegalese Grasshopper, Oedaleus senegalensis (Orthoptera: Acrididae). MPM thesis, Simon Fraser University, Burnaby, BC. 67 pp.Google Scholar
Prinsloo, H.E. 1962. The incidence of Beauveria bassiana (Bals.) Vuill. in laboratory populations of the brown locust. South African Journal of Agricultural Science 5: 331.Google Scholar
Quintela, E.D., Lord, J.C., Alves, S.B. and Roberts, D.W.. 1992. Persistence of Beauveria bassiana in cerrado soil and its interaction with soil microbes. Anais da Sociedad Entomologica do Brasil 21: 6982.Google Scholar
Ramoska, W.A. 1984. The influence of relative humidity on Beauveria bassiana infectivity and replication in the chinch bug, Blissus leucopterus. Journal of Invertebrate Pathology 43: 389394.Google Scholar
Reuter, K.C., Foster, R.N., Black, L.R. and Britton, J.. 1996. Laboratory evaluation of Beauveria bassiana with added chemical stressor, 1995. Arthropod Management Tests 21: 415416.Google Scholar
Roberts, D.W. 1981. Toxins of entomopathogenic fungi, pp. 441464in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Disease. Academic Press, New York, NY.Google Scholar
St. Leger, R.J. 1993. Biology and mechanisms of insect cuticle invasion by deuteromycete fungal pathogens. pp. 211230in Beckage, N.E., Thompson, S.N., and Federici, B.A. (Eds.), Pathogens and Parasites of Insects, Vol. 2. Academic Press, New York, NY.Google Scholar
St. Leger, R.J., Allee, L.L., May, B., Staples, R.C. and Roberts, D.W.. 1992. World-wide distribution of genetic variation among isolates of Beauveria sp. Mycological Research 96: 10071015.Google Scholar
Samson, R.A. and Evans, H.C.. 1982. Two new Beauveria spp. from South America. Journal Invertebrate Pathology 39: 9397.Google Scholar
Schaefer, E.E. 1936. The White Fungus Disease (Beauveria bassiana) Among Red Locusts in South Africa, and Some Observations on the Grey Fungus Disease (Empusa grylli). Scientific Bulletin of the Department of Agriculture & Forestry, Union of S. Africa 160: 28 pp.Google Scholar
Shah, P.A., Kooyman, C. and Paraïso, A.. 1997. Surveys for fungal pathogens of locusts and grasshoppers in Africa and the Near East. pp. 27–35 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Steinhaus, E.A. 1975. Disease in a Minor Chord. Ohio State University Press, Columbus, OH. 488 pp.Google Scholar
Thomas, K.C., Khachatourians, G.G. and Ingledew, W.M.. 1987. Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology 33: 1220.Google Scholar
Watson, D.W., Mullens, B.A. and Petersen, J.J.. 1993. Behavioral fever response of Musca domestica (Diptera: Muscidae) to infection by Entomophthora muscae (Zygomycetes: Entomophthorales). Journal of Invertebrate Pathology 61: 1016.Google Scholar